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1 Introduction

The complexity of an optimization problem is measured by the number of basic operations, which
depends on the number of decision variables to solve for n, number of constraints m, and miscella-
neous costs such as cost of evaluating derivatives z.

The difficulty of an optimization problem is measured by its complexity. Let n be the number of
basic operations to solve a problem, then O(n) would be an easy problem and exponential growth
such as O(2n) would be a hard problem. Below is an example O(2n) problem

arg min
x

cTx

x2
i = 1, i = 1, . . . , n

because there are 2n possible solutions.

The main classes of optimization problems include linear programs (LP), quadratic programs
(QP), quadratically constrained quadratic programming (QCQP), second-order cone programming
(SOCP), semidefinite programming (SDP), and conic programs. They relate to each other by

LP ⊂ QP ⊂ QCQP ⊂ SOCP ⊂ SDP ⊂ conic programs

Solving optimization problems often involve reformulating hard problems into easier problems.

2 Convexity

Given a set of vectors x1, . . . , xn in Rn, the combination
∑

i αixi is

• Affine if
∑

i αi = 1.

• Convex if
∑

i αi = 1 and αi ≥ 0 for all i.

• Conical if αi ≥ 0 for all i.

A set of vectors is affine, convex, or conical if any affine, convex, or conical combination of n vectors
is also in the same set.

2.1 Example Convex Sets

• Half-spaces. Let aTx = b define a hyperplane, then aTx ≥ b or aTx ≤ b is the corresponding
half-space.

• Polyhedron. A polyhedron can be described as the set
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P = {x |Ax � b, Cx = d}
where A ∈ Rm×n and C ∈ Rp×n.

• Norm balls. A norm ball can be described as the set

B(xc, r) = {x | ||x− xc|| ≤ r}
To prove this, use the triangle inequality and positive homogeneity of norms.

• Ellipsoids. An ellipsoid can be described as the set

E = {x | (x− xc)TP−1(x− xc) ≤ 1}
where P ∈ Sn++

1.

2.2 Set Operations Preserving Convexity

Let f : Rn → Rm, then dom f is the set of values x where f(x) is defined. The range of f is the
set of all values f(x) where x ∈ domf . The following are operations on convex sets that preserve
convexity.

• Intersection. Intersection of convex sets are also convex. However, the union of convex sets
is generally not convex.

• Affine transformation. Let f(x) = Ax+ b be a function where f : Rn → Rm. Let S denote
a convex set, then the image of S (f(s) = {f(x)|x ∈ S}) under f is also a convex set. The
inverse image of S under f is also convex (f−1(s) = {x|f(x) ∈ S}).

• Projection: the projection of members of a convex set to a lower dimensional space results
in another convex set.

• Linear fractional transformation. Let f : Rn → Rm be of the form

f(x) =
Ax+ b

cTx+ d

For A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. dom f = {x|cTx+ d > 0}. Then if S is a convex
set, then the image f(S) is also a convex set. The inverse image f−1(S) is also convex.

2.3 Convex Functions

A function f : Rn → R is convex if ∀x, y and ∀α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (1)

1Here S++ denotes the set of positive definite matrices and S+ denotes the set of positive semidefinite matrices
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where f has a convex domain2. Strict convexity is achieved if the inequality of Equation 1 is strict.
The geometric interpretation of a convex function is shown in Figure 1

(x, f(x)) (y, f(y))

Figure 1: The line segment αf(x) + (1−α)f(y) is above f(αx+ (1−
α)y).

If the function f is furthermore continuous, then the midpoint theorem states that checking Equa-
tion 1 is true for α = 1

2 is sufficient to establishing convexity of f .

First Order Condition for Convexity. Suppose a function f : Rn → R is differentiable and
continuous, then f is convex if and only if dom f is a convex set and for all x, y ∈ domf ,

f(y) ≥ f(x) +∇xf(x)T (y − x) (2)

The geometric interpretation is shown in Figure 2.

(x, f(x))

f(y)

f(x) +∇f(x)T (y − x)

Figure 2: Illustration of the condition that f(y) ≥ f(x) +
∇xf(x)T (y − x). Source: Boyd.

Second Order Condition for Convexity. Suppose a function f : Rn → R is twice differen-
tiable and continuous.Then f is convex if and only if dom f is convex and its Hessian is positive
semidefinite (PSD).

∇2
xf(x) � 0 (3)

However, a positive definite Hessian is a sufficient but not necessary condition for strict convexity.
For instance f(x) = x4 is strictly convex but ∇2

xf(x) = 12x2 = 0 at x = 0.

2The requirement that the domain of f be a convex set is just to ensure that f(αx+ (1− α)y) is defined.
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Below are some examples of convex functions that can be verified using the above conditions for
convexity.

• Exponential. A function of the form f(x) = eax is convex for a ∈ R and strictly convex if
a 6= 0. This is easily checked with the second order condition for convexity, where ∇f2(x) =
a2eax ≥ 0.

• Powers.

1. xa is convex on R++ if a ≥ 1 or a ≤ 03.

2. −xa is convex on R+ if 0 ≤ a ≤ 1.

• Logs. The negative log determinant − log detX is convex on domain of PSD matrices. This
is a generalization of the statement that − log x is convex on R++. The negative entropy
x log x is also convex on R++.

Below are additional conditions for establishing convexity.

• Pointwise maximum of a set of convex functions is convex. If f(x, y) is a convex function of
x, then for every y in the index set D, g(x) = supy∈D f(x, y) is a convex function in x. Figure
3 illustrates this concept.

f(x, 1)
f(x, 2)

Figure 3: Illustration of the condition that the pointwise maximum
of a set of convex functions is convex. Here the index set D = {1, 2}
and the red portion of the graph is g(x) = supy∈D f(x, y).

• If f(x) is convex, then g(x) = f(Ax+ b) is also convex for arbitrary A ∈ Rm×n and b× Rm.

• Assume f(x, y) is jointly convex in x and y and D is a convex set. Then g(x) = infy∈D f(x, y)
is convex if g(x) is always greater than −∞. To prove this, let u, v ∈ domf . By definition of
infimum, since g(u) ≤ g(u)+ ε

2 for any ε > 0, there exists y1 ∈ D such that f(u, y1) ≤ g(u)+ ε
2 .

By the same argument there exists y2 ∈ D such that f(v, y2) ≤ g(v) + ε
2 . For α ∈ [0, 1]

3xa needs to be defined on R++ because otherwise x−1/2 is undefined for x = 0.
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f(αu+ (1− α)v) = inf
y∈D

f(αu+ (1− α)v, y)

≤ f(αu+ (1− α)v, αy1 + (1− α)y2)

≤ αf(u, y1) + (1− α)f(v, y2) since f(x, y) is jointly convex in x, y

≤ αg(u) + (1− α)g(v) + ε

• Line restriction. A function f is convex if and only if its restriction to any line is convex.
That is for every member of the set {t|x + ty ∈ domf}, g(t) = f(x + ty) is convex. An
example of this is that the intersection between a cone and a vertical hyperplane results in
another convex function g parameterized by t.

• A function if convex if and only if its epigraph is a convex set.

• A conic combination of convex functions results in another convex function.

• Composition theorem: Let f : D1 → R and g : D2 → R, where D denotes domain of a
function. Also impose Range(f) ⊆ D2. Then if f and g are convex and g is non-decreasing,
then g(f(x)) is also convex. For example, if f(x) is convex, then ef(x) is also convex.

• A quadratic function of the form f(x) = xTAx + bTx + c is convex if A is PSD and strictly
convex if A is positive definite. This can be proved with the second-order condition of con-
vexity.

f(x) = xTAx+ bTx+ c

⇒ ∇f(x) = 2Ax+ b

⇒ ∇2f(x) = 2A

⇒ f is convex ⇔ A � 0

• Indicator functions. Given a set D and the indicator function

ID(x) =

{
0 x ∈ D
∞ otherwise

Then D is a convex set↔ ID(x) is convex. To quickly see this, αx+(1−α)y ∈ D for α ∈ [0, 1]
and any x, y ∈ D by definition that D is convex. Thus ID(αx+ (1− α)y) = 0 always. Given
that αID(x)+(1−α)ID(y) = 0, the definition of convex functions still holds by strict equality.

Indicator functions are useful in formulating optimization problems. As an example, the following
constrained optimization problem in standard form

min
x∈Rn

f0(x)

subject to: fi(x) ≤ 0, i = 1, . . . ,m

can be expressed as the unconstrained optimization problem

min
x∈Rn

f0(x) + ID(x)
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where D is the feasible set of the constrained optimization problem.

Consider the problem of finding the minimum distance of a point x to a convex set M.

g(x) = inf
y∈M
||x− y||

since ||x − y|| is jointly convex in x, y and M is convex, by one of the above conditions g(x) is a
convex function4.

Let ||·|| be a norm on Rn. Its dual norm is

||u||∗ := sup
||x||≤1

uTx

From this definition it can be easily verified that the dual norm of l2 norm is the l2 norm and the
dual norm of l1 norm is the∞ norm5. The dual norm is a norm, therefore the dual norm is convex.

3 Conjugates and Subdifferentials

3.1 Conjugates

A Fenchel conjugate of a function f(x) is defined as

f∗(z) = sup
x∈domf

xT z − f(x) (4)

The Fenchel conjugate f∗(z) is convex because the pointwise supremum of a set of affine functions
in z is convex. Notice that f∗(z) is convex even if f(x) is not.

Fenchel’s inequality states that

f(x) + f∗(y) ≥ xT y (5)

for all x, y.

Example 1
Let f(x) = ax+ b be f : R→ R. Then

f∗(z) = sup
x
zx− (ax+ b) = sup

x
(z − a)x− b =

{
−b if z = a

∞ otherwise

Thus f∗(z) = −b with domf∗ = {a}.
4To see why ||x − y|| is jointly convex in x, y, for α ∈ [0, 1], ||[αx1 + (1 − α)x2] − [αy1 + (1 − α)y2]|| = ||α(x1 −

y1) + (1− α)(y2 − x2)|| ≤ α||x1 − y1||+ (1− α)||x2 − y2||. Assume ||·|| excludes the l0 norm.
5For dual norm of l2 norm, x∗ = u/||u||2. For dual norm of l1 norm, let j = arg maxi{ui,−ui}, then x∗ = sign(uj)
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Example 2
If f(x) = ||x||, then

f∗(z) = I||·||∗≤1(z) =

{
0 ||z||∗ ≤ 1

∞ ||z||∗ > 1

Recall dual norm definition ||z||∗ = sup
||x||≤1

xT z.

• Case 1. If ||z||∗ ≤ 1, then for any x

zT
(

x

||x||

)
≤ ||z||∗ ≤ 1

⇒ zTx− ||x|| ≤ 0

⇒ f∗(z) = sup
x
zTx− ||x|| ≤ 0

which has solution x∗ = 0 with value f∗(z) = 0.

• Case 2. If ||z||∗ > 1, then there exists x such that ||x|| ≤ 1 and xT z > 1. Then f∗(z) =
supx

(
zTx− ||x||

)
≥ zT (tx)− ||tx|| = t(zTx− ||x||) for t ∈ R.

Thus if t→∞, then the lower bound t(zTx− ||x||)→∞ since zTx− ||x|| > 0. This implies
that for f∗(z) = supx

(
zTx− ||x||

)
, x can be chosen such that f∗(z) =∞.

Exercise 1
Let f(x) = 1

2x
TAx+ bTx+ c with A � 0. Show that f∗(z) = 1

2(z − b)TA−1(z − b)− c.

Solution
By definition we have

f∗(z) = sup
x

[
xT y −

(
1

2
xTAx+ bTx+ c

)]

Let g(x) := xT y −
(

1
2x

TAx+ bTx+ c
)
. Since g(x) is concave, it has a global maximum that can

be found via the first order optimality condition.

∇g(x) = 0⇒ x∗ = A−1(z − b)

Substitution yields

f∗(z) = (x∗)T z − 1

2
(x∗)TA(x∗)− bTx∗ − c

= (z − b)TA−1z − 1

2
(z − b)TA−1(z − b)− bTA−1(z − b)− c

=
1

2
(z − b)TA−1(z − b)− c

where going to the third line from the second line may involve computing the individual terms and
canceling each other out.
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Exercise 2
Let f(x) =

∑n
i=1 xi log xi. Show that f∗(z) =

∑n
i=1 e

zi−1.

Solution
From definition we have

f∗(z) = sup
x

[
zTx−

n∑

i=1

xi log xi

]

=

n∑

i=1

sup
xi

[zixi − xi log xi]

⇒ x∗i = ezi−1 by first order condition: zixi − xi log xi is convex

⇒ f∗(z) =
n∑

i=1

ezi−1 By substitution with x∗i

Exercise 3
Let f(X) = − log det(X), where dom f = Sn++. Show that f∗(Z) = − log(det(−Z))− n , where Z
belongs to a set of negative definite matrices.

Solution
Let g(Z) = trace(XZ) + log det(X). From definition we have

f∗(Z) = sup
X
g(Z)

⇒ ∇Xg(Z) = Z +X−1 = 0 − log det(X) is convex

⇒ X∗ = (−Z)−1

⇒ f∗(Z) = trace(−(A−1A)) + log det((−Z)−1) By substitution with X∗

⇒ f∗(Z) = −n+ log[det(−Z)]−1

⇒ f∗(Z) = −n− log[det(−Z)]

Where in the second line, we used the matrix derivative rules that ∇Atrace(AB) = BT and
∇Adet(A) = det(A)(A−1)T . The fourth line uses the fact that (cA)−1 = c−1A−1 for constant
c. The fifth line uses the fact that det(A−1) = 1/det(A).

3.2 Subdifferentials

A vector g ∈ Rn is a subgradient at point y if for all x ∈ domf , it holds that

f(x) ≥ f(y) + gT (x− y) (6)

The subgradient is a generalization of the concept of a gradient for a convex function. If the convex
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function is differentiable, then the subgradient is unique. However, if the convex function is not
differentiable everywhere, then there exists an infinite number of subgradients g1, . . . , g∞ at point
y. Figure 4 illustrates an example convex function that is not differentiable everyone.

x1 x2

f(x)

f(x2) + g2 (x− x2)

f(x2) + g3 (x− x2)

f(x1) + g1 (x− x1)

Figure 4: Example convex function that is not differentiable every-
where. There are multiple subgradients at x2.

A subgradient is a global linear under-estimator of a function f at (y, f(y)) because of the inequality
in Equation 6. In general local under-estimators are also global under-estimators if f is convex.

A subdifferential is defined as the set of all subgradients at y for function f and is denoted ∂f(x).

Theorem 3.2.1 A subdifferential ∂f(y) is a closed convex set and possibly empty.

Proof. From definition f(x) − f(y) ≥ (x − y)T g, where y is fixed. For each x, the set of
g’s is a half-space, which is a convex set. A subdifferential can then be expressed as the
intersection of such half-spaces

∩x{g|f(x) ≥ f(y) + gT (x− y)}
Since the intersection of convex sets is another convex set, ∂f(y) is a convex set.

Example 1
Let f be a function with dom f on R+ and defined as

f(x) =

{
1 x = 0

0 x > 0

At x = 0, the subdifferential ∂f(x) = ∅. This is illustrated in Figure 5.

13



g1
g2

g3

Figure 5: Example function f where ∂f(x) at x = 0 is the empty
set.

Theorem 3.2.2 If x ∈ interior of dom f , then ∂f(x) at x is nonempty and bounded where
f is convex.

Example 2
If f(x) = |x|, then the subdifferential is

∂f(x) =





1 x > 0

−1 x < 0

[−1, 1] x = 0

In all cases, the subdifferential is nonempty and bounded.

Theorem 3.2.3 If f is differentiable at x, then ∂f(x) = {∇f(x)}. If ∂f(x) = {g}, then
f(x) is differentiable at x and g = ∇f(x).

Example 3 Let f = ||x||2 be the Euclidean norm. Find ∂f(x). There are two cases to consider -
x = 0 and x 6= 0.

When x 6= 0

∂f(x)

∂xi
=

xi
||x||2

From this it can be inferred that ∇f(x) = x/||x||2. When x = 0, this corresponds to the case when
y = 0 in Equation 6, which leads to

||x||2 ≥ gTx

14



We know from dot products that the above inequality is met with equality when g = x
||x||2 , and

that with any other vector y 6= x with ||y||2 ≤ 1, the inequality is strict. Thus it can be concluded
that

∂f(x) =

{
||x||−1

2 x x 6= 0

{z | ||z||2 ≤ 1} x = 0

Theorem 3.2.4 If f(x) = maxx{f1(x), . . . , fk(x)}, then ∂f(x) is the convex hull of union
of ∂if(x) for all i ∈ L(x), where L(x) is the set of indices of active functions at x

L(x) = {i | f(x) = fi(x)}

Consider the f(x) = maxx{f1(x), f2(x)} in Figure 6.

f1
f2

a

Figure 6: Example functions f1 and f2 where both functions are
active at x = a.

Then

∂f(x) =





{∇f1(x)} x < a

{∇f2(x)} x > a

[∇f1(x),∇f2(x)]T θ x = a

Example 4
Let f(x) = max1≤i≤k{aTi x+ bi}. Then ∂f(x) = convex hull of {ai|L(x)} since ∂fi(x) = {ai}.

4 Optimization Problems

An optimization problem of the form

15



p? = min
x∈Rn

f0(x)

subject to: fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(7)

is called a convex optimization problem if

• The objective function f0 is convex

• The functions fi, i = 1, . . . ,m are convex

• The functions hi, i = 1, . . . , p are affine

A convex optimization problem can be reformulated as follows

• Conversion between maximization and minimization problems. arg max g(x) = arg min−g(x).

• An equality constraint can be expressed as two inequality constraints.

g(x) = 0⇔
{
g(x) ≤ 0

−g(x) ≤ 0

• An inequality constraint can be expressed as an equality constraint. g(x) ≤ 0⇔ g(x)+z2 = 0
for z ∈ R.

• Change of variables. Suppose φ : Rn → Rn is one-to-one, with φ(domφ) ⊇ D, where D is the
problem domain of the optimization problem in problem 7. We define functions f̃i = fi ◦ φ
and h̃j = hj ◦ φ as

f̃i(z) = fi(φ(z)), i = 0, . . . ,m, h̃j(z) = hj(φ(z)), j = 1, . . . , p

Then the optimization problem

min
z∈Rn

f̃0(z)

subject to: f̃i(z) ≤ 0, i = 1, . . . ,m

h̃j(z) = 0, j = 1, . . . , p

(8)

is equivalent to problem 7. Two problems are equivalent if the solution of one problem can
be readily found from solution to another. In change of variables, z = φ−1(x) solves problem
8 while x = φ(z) solves problem 7.

• Transformation of objective and constraint functions. Suppose

– ψ0 : R→ R is strictly increasing.

– ψi : R→ R; ψi(y) ≤ 0⇔ y ≤ 0; i = 1, . . . ,m.

– ψi : R→ R; ψi(y) = 0⇔ y = 0; i = m+ 1, . . . ,m+ p.
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Then the new problem

min
x∈Rn

ψ0(f0(x))

subject to: ψi(fi(x)) ≤ 0, i = 1, . . . ,m

ψj+m(hj(x)) = 0, j = 1, . . . , p

(9)

is equivalent to problem 7 because the feasible sets and optimal points are identical. An
example of this is arg minx||Ax − b||2 = arg minx||Ax − b||22, where ψ0(x) = x2 is strictly
increasing on x ∈ R+, which is the case since f0(y) = ||y||2 ≥ 0.

• Epigraph form. Any optimization problem can be converted to another optimization problem
whose objective is linear

min
x∈Rn,t∈R

t

subject to: f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(10)

at optimality, t∗ = f0(x∗). The problem does not set f0(x) = t because an optimization
algorithm needs to guess x ∈ Rn, t ∈ R such that f0(x) ≤ t.

Given f : Rn → R with domain X , a stationary point6 can be categorized into the following types
of points.

• Local minimum: a point x∗ ∈ Rn such that there exists R > 0 where f(x∗) ≤ f(x) for all
x ∈ X ∩ {y | ||y − x∗||2 ≤ R}.

• Global minimum: a point x∗ ∈ Rn that is feasible and gives lowest value possible for f(x).

A few terms need to be defined for x ∈ X for an optimization problem of the general form in
problem 7.

• Feasible Solution: satisfies all constraints and belongs to domain of optimization problem,
where domain = dom f0(x) ∩ dom f1 ∩ · · · ∩ dom fm ∩ dom h1 ∩ · · · ∩ dom hp.

• Optimal Solution: infimum of f0(x) over all feasible solutions, with optimal values ∈
{−∞, finite real value,∞}. An optimal value of −∞ is described as unbounded below and
an optimal value of ∞ is described as infeasible. Example optimization problems with −∞
optimal values include minx∈R++ log x and minx∈R x.

4.1 Convex Optimization

For a convex optimization, satisfying the second order condition is necessary and sufficient for
guaranteeing a global minimum. However, the second order condition is necessary and sufficient
only for guaranteeing a local minimum.

6A stationary point for a function f is a point x∗ ∈ Rn where ∇xf(x∗) = 0.
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A convex optimization problem involves minimization of a convex function over a convex set.
According to problem 7, this means that f0, f1, . . . , fm are convex functions and h1, . . . , hp are
affine functions. The feasible set of a convex optimization is convex because it is the intersection
of sublevel sets and hyperplanes, both of which are convex sets. The set satisfying fi ≤ 0 for all i
is a convex sublevel set because fi for all i are convex.

Example 1
The optimization problem

min
x

x2
1 + x2

2

subject to: x3
1 ≤ 0

x1 + x2 ≥ 1

is not convex because f(x) = x3 is not convex on R−. However, on observing that x3 ≤ 0 if and
only if x ≤ 0 allows us to replace the constraint x3

1 ≤ 0 with x1 ≤ 0, which turns the optimization
problem into a convex optimization problem.

Theorem 4.1.1 Every local minimum of a convex optimization problem is a global minimum.

Proof. Proof by contradiction. Suppose x is a locally optimal point and y is an optimally
global point with f(y) < f(x). By definition of local optimality, ∃ R > 0 such that f(x) <
f(z) for all ||x− z||2 ≤ R. A proof by contradiction would involve showing it is possible to
choose z such that ||x− z||2 ≤ R is satisfied for any R > 0, but f(z) < f(x).

z = θy + (1− θ)x with θ =
R

2||x− y||2
Then

||x− z||2 =

∣∣∣∣
∣∣∣∣x−

(
R

2||x− y||2
y +

(
1− R

2||x− y||2

)
x

) ∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣

R

2||x− y||2
(x− y)

∣∣∣∣
∣∣∣∣
2

= R/2 ≤ R
So for any given R > 0, θ ∈ [0, 1] can be chosen such that z is less than R in Euclidean
distance to x. By convexity of f we have

f(z) = f(θy + (1− θ)x) ≤ θf(y) + (1− θ)f(x) < f(x)

where the last strict inequality is true because f(y) is the global minimum. However, f(z) <
f(x) is a contradiction to assuming x is a local minimum, thus such a local minimum cannot
exist for convex objective function f . Intuitively, this proof states that any point on the line
segment between x and y has objective value less than f(x). To conclude the proof, since
local minima cannot exist for convex objective functions, only global minima can exist for
convex objective functions.

Below are a few additional conditions for global minimum of a convex function f .
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Theorem 4.1.2 Consider a point x that is in the interior of the feasible set X .

x is a global minimum⇔ ∇f0(x) = 0

Theorem 4.1.3 Consider a point x in the feasible set X .

x is a global minimum⇔ (∇f0(x))T (y − x) ≥ 0 ∀y ∈ X
for convex function f0.

Proof.

• Forward direction: contrapositive proof. Suppose (∇f0(x))T (y − x) < 0. Consider the
point z(t) = ty + (1− t)x with t ∈ [0, 1]. Notice that

d

dt
f0(z(t)) = ∇f0(x)T (y − x) < 0

since ∇tz(t) ∈ Rn×1 and ∇xf0(x) ∈ Rn×1. Which means that f0(z(t)) < f0(x) for
small positive increase of t at t = 0. This implies that x is not the global minimum,
and completes proof in forward direction.

• Reverse direction: recall the first order condition for convexity for function f

f(y) ≥ f(x) +∇xf(x)T (y − x) ∀y ∈ X
If ∇xf(x)T (y − x) ≥ 0 for all y ∈ X , then this implies that f(y) ≥ f(x) for all y ∈ X ,
and shows that x is global minimum.

A geometric interpretation is illustrated in Figure 7.

X
x

y y − x

∇f0(x) (y − x) = 0

H−(x)H+(x)

∇f0(x)

Figure 7: Geometric interpretation of an optimality condition. Here
the shaded region represents the whole feasible set. Source: Boyd.

In other words, the optimal x∗ locates the hyperplane formed by ∇f0(x) such that all points y ∈ X
lie on the side of the hyperplane such that the angle between ∇f0(x) and y − x is less than 90◦.
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This means that for all y ∈ X −{x}, the objective increases and are thus not the optimal solution.
In general, the direction of the gradient increases the objective and the opposite direction decreases
the objective 7. Thus, x ∈ X is as close to the global unconstrained minimum as it gets. In the case
where the unconstrained global optimum is in the interior of X , then ∇f0(x) = 0 at that point.

Example 2
Consider the convex optimization problem

min
x∈Rn

f0(x)

subject to: x � 0

where x∗ 6= 0 is the global minimum. We can show that Theorem 4.1.2 follows from Theorem 4.1.3
in establishing global optimality of x∗.

If we pick

x(1) =




x∗1
x∗2
...

x∗i + 1
...
x∗n




Then (xi−x∗i ) ≥ 0 for all i and ∂f0(x∗)
∂xi

≥ 0 for all i in order to satisfy the global optimality condition
in Theorem 4.1.3. If we pick

x(2) =




x∗1
x∗2
...

x∗i /2
...
x∗n




Then (xi − x∗i ) ≤ 0 for all i and ∂f0(x∗)
∂xi

≤ 0 for all i again in order to satisfy the global optimality
condition in Theorem 4.1.3.

Since x(1) and x(2) are both in the feasible set X , both conditions on ∂f0(x∗)
∂xi

need to be satisfied,
implying that ∇xf0(x) = 0.

7As an illustration, if f(x) = x2 is the objective, then f ′(x) = 2x is the gradient. When x < 0, f ′(x) < 0, and
decreasing x increases f(x). However, changing x in the direction opposite of f ′(x) gives the direction that decreases
the objective f(x).
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Theorem 4.1.4 The set of global minima points of an objective function f0 : Rn → R
includes the set

{x∗ ∈ Rn | 0 ∈ ∂f0(x∗)}

Proof. x∗is global minimum point⇔ f0(x) ≥ f0(x∗) ∀x ∈ X
⇔ f0(x) ≥ f0(x∗) + 0T (x− x∗) ∀x ∈ X
⇔ 0 ∈ ∂f0(x∗)

To show why Theorem 4.1.3 is still necessary even with Theorem 4.1.2, consider the objective
function f0(x) = |x| with dom f0 = R. In this case ∇xf0(x) is not defined at x = 0 even though
x = 0 is a global minimum point.

4.2 Classes of Convex Optimization Problems

• Linear Program (LP): minimization of a linear objective function subject to linear equality
and inequality constraints. Conversion of a LP program of generic form to standard form is
the operation

min
x

cTx+ d min
x̃

c̃T x̃

subject to: Gx ≤ h =⇒ Ãx̃ = b̃

Ax = b x̃ ≥ 0

Using the conversion tricks

– Gx ≤ h⇔ Gx+ s = h for s ≥ 0.

– x can be rewritten as x = x+ − x− with x+ ≥ 0 and x− ≥ 0.

Example 1
Minimization of the objective function f(x) = maxi=1,...,m(aTi x+ bi) can be written as a LP

min
x,t

t

s.t. aTi x+ bi ≤ b i = 1, . . . ,m

Example 2
The optimization problem

min
x∈Rn

||x||1
s.t. Gx ≤ h

Ax = b

can be converted into the LP
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min
x∈Rn,t∈Rn

t1 + · · ·+ tn

s.t. Gx ≤ h
Ax = b

− ti ≤ xi ≤ ti, i = 1, . . . , n

• Quadratic Program(QP): minimization of a quadratic function subject to linear equality
and inequality constraints.

A QP has the standard form.

min
x

1

2
xTPx+ cTx+ d

subject to Gx � h
Ax = b

for x ∈ Rn, c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm , A ∈ Rp×n, b ∈ Rp, and P ∈ Sn+. Given a
quadratic term xTPx in the quadratic objective, where P is not necessarily symmetric, one
should first convert P to P ′ such that P ′ = (P ′)T . Then the rest is determining whether P ′

is PSD. For example

[
x1 x2

] [1 2
3 4

] [
x1

x2

]
= x2

1 + 5x1x2 + 4x2
2 =

[
x1 x2

] [ 1 5/2
5/2 4

] [
x1

x2

]

A QP is equivalent to LP when P = 0.

• Quadratically Constrained Quadratic Program (QCQP): QP with quadratic inequal-
ity constraints. The standard form is

min
x

1

2
xTP0x+ cT0 x+ d0

subject to
1

2
xTPix+ cTi x+ di ≤ 0, i = 1, . . . ,m

Ax = b

where in order for a QCQP to be convex, P0, P1, . . . , Pm need to be PSD. A QCQP becomes
a QP if Pi = 0 for i = 1, . . . ,m.

Example 3
The constrained least squares problem

min
x

||Ax− b||2
s.t. ||x||2 ≤ 1

can be converted to the convex QCQP problem

min
x

||Ax− b||22
s.t. ||x||22 ≤ 1

• Second-Order Cone Program (SOCP): a convex optimization problem of the form
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min
x∈Rn

cTx

||Aix+ bi||2 ≤ fTi x+ di i = 1, . . . ,m

Fx = g

where the problem parameters are c ∈ Rn, Ai ∈ Rmi×n, bi ∈ Rmi , fi ∈ Rn, di ∈ R, F ∈ Rp×n
and g ∈ Rp. IfAi = 0, bi = 0 for i = 1, . . . ,m, then the problem becomes a linear programming
problem. The existence of the term ||Aix+ bi||2 covers many applications.

The origin of the name can be understood by considering the mathematical definition of a
second-order cone

Kn = {(x, t) ∈ Rn+ : t ≥ ||x||2}
which is graphically depicted as the cone in Figure 8.

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

Figure 8: Second-order cone. Source: Boyd.

Example 4. Robust LP
A robust LP is a LP problem where the coefficients of the linear constraints are not known
precisely. It takes on the form

min
x∈Rn

cTx

s.t. aTi x ≤ bi, i = 1, . . . ,m

ai ∈ ξi = {āi + Piu | ||u||2 ≤ 1}
where P1, . . . , Pm are invertible. In other words, the a1, . . . , am exist in an ellipsoid. The
robust LP can be converted to a SOCP by adding the requirement that the constraints are
satisfied regardless of choice of ai ∈ ξi for all i.

(āi + Piu)Tx ≤ bi : ||u||2 ≤ 1

⇒ (Piu)Tx ≤ bi − āTi x : ||u||2 ≤ 1

max
u:||u||2≤1

(Piu)Tx ≤ bi − āTi x
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The solution is u∗ = P Ti x/||P Ti x||2, which yields

||P Ti x||2 ≤ bi − āTi x
Thus, the SOCP form of robust LP that guarantees satisfied constraints are

min
x∈Rn

cTx

s.t. ||P Ti x||2 ≤ bi − āTi x i = 1, . . . ,m

• Semidefinite Program (SDP): a SDP has the standard form

min
x∈Rn

cTx

s.t. F0 + x1F1 + x2F2 + · · ·+ xnFn � 0

Ax = b

For symmetric matrices F0, F1, . . . , Fn ∈ Sk. It is not important whether the constraint is
F0 + x1F1 + · · · + xnFn � 0 or F0 + x1F1 + · · · + xnFn � 0, because setting F ∗i = −Fi for
all i maintains the symmetric requirement for F ∗i . This inequality is called a linear matrix
inequality. The canonical form of SDP is

min
X∈Rn×n

tr(CX)

s.t. tr(AiX) = bi i = 1, . . . ,m

X � 0

where X ∈ Rn×n and C,A1, . . . , Am ∈ Sn.

5 Semidefinite Programs

Example problems such as

• Minimizing maximum eigenvalues of a matrix

• Minimizing sum of two largest eigenvalues

• Minimizing sum of all eigenvalues of a matrix

• Maximizing minimum eigenvalue of a matrix

can all be written as SDPs. Let A(x) = A0 + x1A1 + · · · + xnAn ∈ Sm for x ∈ Rn and symmetric
matrices A0, . . . , An. Let λ1 ≤ λ2 ≤ · · · ≤ λm be eigenvalues of A(x).

• Minimizing maximum eigenvalue of A(x) is the problem minx∈Rn λm(A(x)), which can be
expressed as a SDP using the epigraph trick
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min
x∈Rn,t∈R

t

s.t.A(x) � tIm
where the constraint ensures that the eigenvalues of A(x) are bounded by t8.

• Minimizing the sum of k greatest eigenvalues of a matrix is the problem minx∈Rn
∑m

i=k λi(A(x)),
which can be converted to a SDP.

min
x∈Rn,s∈R,Z∈Sm

tr(Z) + s(m− k + 1)

s.t. Z � 0

Z −A(x) + sIm � 0

where

A(x) = UΛUT

= U




λm − λk 0
. . .

λk − λk
0 0


U

T + U




0
λk−1 − λk

. . .

λ1 − λk


U

T + λkIm

= UZUT + UDUT + λkIm

since D is negative semidefinite9, then A(x)− Z − λkIm � 0.

tr(Z) =
m∑

i=k

(λi − λk) =

(
m∑

i=k

λi

)
− λk(m− k + 1)

In the problem, let s = λk since λk is unknown. Then the sum of k greatest eigenvalues is of
the form tr(Z) + s(m− k + 1), where s is to be solved subject to constraints.

• Maximizing the sum of k smallest eigenvalues of a matrix can be extended from the result
above, since maxx∈Rn

∑k
i=1 λi(A(x)) can be rewritten as

min
x∈Rn

m∑

i=m−k+1

λi(B(x)), B(x) = −A(x)

5.1 Max-cut

Max-cut is the problem of partitioning the vertices of a graph into two disjoint sets such that the
number of edges between the two sets is maximum. The problem is hard because there are 2n−1

number of partitions with n nodes10. A more general problem occurs when each edge e(i, j) has
weight wij ≥ 0, and the goal is to maximize

∑
wij for all e(i, j) crossing the cut.

8To see this, let A(X) = UΛUT by spectral theorem. Then A(x)− tIm = U(Λ− tIm)UT � 0 ⇒∑m
i=1(λi − t)ũ2

i

for all ũ = UTx ∈ Rm. This implies that λi − t ≤ 0 for all i.
9Recall that λ1 ≤ λ2 ≤ · · · ≤ λm.

10To see why 2n−1, imagine a binary decision tree for deciding whether to include node ni in set A or B. Each leaf
represents a final partition. A tree of height h has 2h leaves, and since n decisions results in a tree of height n − 1,
the number of partitions is 2n−1.
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The optimization problem is formulated as follows. Let S1 and S2 be two partitions and let xi be
a variable associated with node i such that

xi =

{
+1 if xi ∈ S1

−1 if xi ∈ S2

Let ξ be the edge set of the graph. Then the summation of weights belonging to edges crossing the
cut is

∑

e(i,j)∈ξ

1

2
wij(1− xixj) (11)

This summation can be written as xTLx, where L is the Laplacian matrix for weighted graphs.
The Laplacian matrix L is defined as

Lij =





0 (i, j) /∈ ξ
−wij i 6= j, (i, j) ∈ ξ∑

k:k 6=iwik i = j

Then

xTLx =

n∑

i=1

y2
i

∑

k 6=i
wik − 2

∑

e(i,j)∈ξ
xixjwij

= 2w(ξ)− 2
∑

e(i,j)∈ξ
xixjwij

= 4


 ∑

e(i,j)∈ξ
wij

1− xixj
2




(12)

where the coefficient 2 on the right hand side of the first equality comes from coefficients from
xTQx for Q ∈ Sn. For the example where n = 2.

[
x1 x2

] [a c
c d

] [
x1

x2

]
= ax2

1 + 2cx1x2 + dx2
2

The term 2w(ξ) term on the right hand side of the second equality comes from the property graph
property that the sum of degrees of every node in a graph is equal to 2|ξ| because each edge is
counted twice. From the result of Equation 12 it can be concluded that 1

4x
TLx is equivalent to

Equation 11. Since the coefficient 1/4 will not affect the solution of max-cut, it can be dropped
from the optimization problem formulation.

Thus the max-cut optimization problem is
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max
x∈Rn

xTLx

s.t. x2
i − 1 = 0, i = 1, . . . , n

(13)

We can express xTLx = tr(xTLx) = tr(LxxT ) = tr(LX), where the second equality comes from the
trace property that tr(AB) = tr(BA). The “almost” SDP formation of the optimization problem
of Equation 13 is

max
X∈Sn

tr(QX)

s.t. X � 0

Xii = 1, i = 1, . . . , n

rank(X) = 1

(14)

However, the SDP formulation has no rank constraint, and removing the rank(X) = 1 constraint
in the optimization problem is called SDP relaxation.

Let x∗ be the optimal solution of the original problem (13) and X∗ the optimal solution of the
relaxed problem (14) (without the rank 1 constraint). Since (14) is a relaxation, it is clear that:

tr(QX∗) ≥ x∗>Qx∗
Now we seek to find an upper bound for the relaxed problem. That one is given by Goemans and
Williamson in 199511.

Theorem 5.1.1 Let x∗ be the optimal solution of the original problem (13) and X∗ the
optimal solution of the relaxed problem (14). Then:

1

0.87
x∗>Qx∗ ≥ tr(QX∗) ≥ x∗>Qx∗

Proof: The right hand side inequality is trivial due to the relaxation of the SDP formulation.
The proof for the left hand side can be found in Goemans and Williamson paper. The main
idea is as follows. If X∗ is not rank 1, then we know that X∗ 6= x∗x∗>. Define a probability
distribution Y ∼ N(0, X∗), that is a multivariate gaussian with mean 0 and covariance X∗.
Define a new probability distribution x̂ as:

x̂i =

{
+1 if yi ≥ 0, i = 1, . . . , k
−1 otherwise

Then it is clear that:

E(x̂>Qx̂) ≤ x∗>Qx∗
since:

∫
x̂>Qx̂px̂(x̂)dx̂ ≤

∫
x∗>Qx∗px̂(x̂)dx̂ = x∗>Qx∗

and in addition, it can be showed that

E(x̂>Qx̂) ≥ 0.87 · tr(QX∗)
That implies that the Gaussian cut is 13% away from the optimal (in expectation).

11http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf
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5.2 Polynomial Optimization

Let p0, p1, . . . , pm be polynomials of any order. Polynomial optimization is a problem of the form

min
x∈Rn

p0(x)

s.t. pi(x) ≤ 0 i = 1, . . . ,m

Any polynomial optimization problem can be converted to a QCQP.

Example 1
The problem minx1,x2∈R x

4
1 + x1x

2
2 + x6

1 can be converted to the following nonconvex QCQP.

min
x1,x2,x3,x4,x5∈R

x2
3 + x1x5 + x3x4

s.t. x2
1 − x3 = 0

x2
3 − x4 = 0

x2
2 − x5 = 0

The converted problem may not be convex because the quadratic constraints are not guaranteed
to be convex.

6 Conic Optimization

A set K ⊆ Rn is a cone if for all x ∈ K and all α > 0, we have αx ∈ K. A proper cone K has the
following properties.

• K is convex: for all x, y ∈ K, α1x+ α2y ∈ K for all α1, α2 > 0.

• K is closed.

• K is solid: K has a nonempty interior. For example, a line in R2 is not a proper cone (since
it does not have interior).

• K is pointed: if x ∈ K and −x ∈ K, then x = 0.

For example the set R2
+ is a proper cone. The half place {x ∈ R2 : x2 ≥ 0} is not a proper cone

because it is not pointed. For a proper cone K.

• x �K y ⇔ x− y ∈ K

• x �K y ⇔ x− y ∈ intK
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A conic linear optimization problem has the following standard form

min
x∈R

cTx

s.t. Aix− bi �Ki 0 i = 1, . . . ,m

Fx = g

If K = Rn+, then the conic optimization problem becomes a LP. Let X be defined as

X =



x(1)

x(2)

...




where x(i) ∈ Rn. Then X �K 0 for K = K1 ×K2 × · · · is equivalent to12

x(1) �K1 0

x(2) �K2 0

...

7 Separating and Supporting Hyperplanes

7.1 Separating Hyperplane Theorem

Suppose C and D are two convex sets that do not intersect, i.e. C ∩D = ∅. Then ∃a 6= 0 and b
such that:

a>x ≤ b, ∀x ∈ C
a>x ≥ b, ∀x ∈ D

12Let C1 and C2 be two sets, then C1 × C2 is the set of ordered pairs {(c1, c2)|c1 ∈ C1, c2 ∈ C2}.
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2.5 Separating and supporting hyperplanes 47

E1

E2

E3

Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.

D

C

a

aTx ≥ b aTx ≤ b

Figure 2.19 The hyperplane {x | aTx = b} separates the disjoint convex sets
C and D. The affine function aTx− b is nonpositive on C and nonnegative
on D.

Figure 9: Separating hyperplane for C and D. Source: Boyd.

Note that the inequalities are not always strict. As an example consider the sets in R2 defined by
C = {(x, y) : y ≤ 0} and D = {(x, y) : y ≥ ex}. The only possible separating hyperplane is given
by y = 0, which is in the set C.

Sketch of the proof:

1. Find (c, d) as the points that minimize the distance between the sets

dist(C,D) = inf{||u− v||2 : u ∈ C, v ∈ D}

2. Find the midpoint of the segment

3. Draw an orthogonal hyperplane going through the midpoint (that is orthogonal to the segment
that connects c and d). For that, define:

a = d− c, b =
||d||2 − ||c||2

2
then a>x = b is a separating hyperplane.
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48 2 Convex sets

D

C

a

d

c

Figure 2.20 Construction of a separating hyperplane between two convex
sets. The points c ∈ C and d ∈ D are the pair of points in the two sets that
are closest to each other. The separating hyperplane is orthogonal to, and
bisects, the line segment between c and d.

is positive, and that there exist points c ∈ C and d ∈ D that achieve the minimum
distance, i.e., ‖c− d‖2 = dist(C,D). (These conditions are satisfied, for example,
when C and D are closed and one set is bounded.)

Define

a = d− c, b =
‖d‖22 − ‖c‖22

2
.

We will show that the affine function

f(x) = aTx− b = (d− c)T (x− (1/2)(d+ c))

is nonpositive on C and nonnegative on D, i.e., that the hyperplane {x | aTx = b}
separates C and D. This hyperplane is perpendicular to the line segment between
c and d, and passes through its midpoint, as shown in figure 2.20.

We first show that f is nonnegative on D. The proof that f is nonpositive on
C is similar (or follows by swapping C and D and considering −f). Suppose there
were a point u ∈ D for which

f(u) = (d− c)T (u− (1/2)(d+ c)) < 0. (2.16)

We can express f(u) as

f(u) = (d− c)T (u− d+ (1/2)(d− c)) = (d− c)T (u− d) + (1/2)‖d− c‖22.

We see that (2.16) implies (d− c)T (u− d) < 0. Now we observe that

d

dt
‖d+ t(u− d)− c‖22

∣∣∣∣
t=0

= 2(d− c)T (u− d) < 0,

so for some small t > 0, with t ≤ 1, we have

‖d+ t(u− d)− c‖2 < ‖d− c‖2,

Figure 10: Construction of the separating hyperplane. Source: Boyd.

Theorem 6.1 Let C ∩D = ∅. If C is a single point and D is a closed set, then there is strict
separation.

C

D

strict
separation

D

C

no strict
separation

Figure 11: On the left, D is closed and so we can ensure strict
separation. On the right, since D is open, there may be cases on
which we cannot ensure strict separation.

7.2 Converse Separating Hyperplane Theorem

Any convex set C and D, with at least one being open, are disjoint if and only if there is a separating
hyperplane.

Note that the existence of the hyperplane does not imply that the sets are disjoint, as demonstrated
in Figure 12.
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C

D

Figure 12: A sufficient condition is that one set should be open. In
this case, since both sets are closed, we can find a separating hyper-
plane, but they are not disjoint.

7.3 Theorem of Alternatives for Strict Inequalities

We want to find necessary and sufficient conditions on A ∈ Rm×n and b ∈ Rm such that the
inequality Ax < b has no solutions.

Define C = {b − Ax : x ∈ Rn} and D = Rn++. Observe that the original problem Ax < b is
infeasible if and only if C ∩D = ∅. Also, note that C and D are convex and D is open. So, by the
converse separating hyperplane theorem:

C ∩D = ∅ ⇔ ∃λ ∈ Rm, µ ∈ R

s.t.

{
λ>y ≤ µ ∀y ∈ C
λ>y ≥ µ ∀y ∈ D

The previous conditions can be simplified. The first one implies that λ>(b−Ax) ≤ µ for all x. This
can be written as λ>b − λ>Ax ≤ µ for all x. Since λ>Ax could reach ∞ if x is unrestricted, the
only condition that guarantees the inequality for all x is when λ>A = 0. This implies that λ>b ≤ µ

From the second inequality we got that λ>y ≥ µ for all y > 0. For y → 0 we obtain that
λ>y ≈ 0 ≥ µ and so µ ≤ 0. Since µ is nonpositive and y > 0 we require that λ ≥ 0 and λ 6= 0.
This implies that λ>b ≤ µ ≤ 0. Putting all the conditions together we obtain:

∃λ ∈ Rm s.t. λ 6= 0, λ ≥ 0, A>λ = 0, λ>b ≤ 0 (15)

In summary, the set of inequalities Ax < b is infeasible if the set of inequalities: λ ≥ 0, A>λ =
0, λ>b ≤ 0 has a nonzero solution. This means that Ax < b and (15) form a pair of alternatives:
for any data A and b, exactly one of them is solvable.
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7.4 Supporting hyperplane

If C is a closed convex set, and D is a single point x0 on the boundary of C, then there is a
separating hyperplane which is called supporting hyperplane:

x0

a

x0

infinitely many
supporting hyperplanes

Figure 13: On the left, a smooth point has a unique and tangential
supporting hyperplane. On the right, a sharp point admits infinitely
many supporting hyperplanes.

A point may have infinitely many supporting hyperplanes, but at a smooth point x0 (in simple
terms, that is not a corner of two linear constraints) separating hyperplane is unique and tangential
to the set.

7.5 Dual Cones

Given a cone K, the dual cone K∗ is defined as

K∗ = {y | 〈x, y〉 ≥ 0, ∀x ∈ K} (16)

K∗ is always a cone, even if K is not.

Geometrically, y ∈ K∗ if and only if −y is the normal of a hyperplane that supports K at the origin
as illustrated in the following figure
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52 2 Convex sets

K Ky

z

Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y ∈ K∗. Right. The halfspace with inward normal z does not contain K,
so z �∈ K∗.

Example 2.23 Nonnegative orthant. The cone Rn
+ is its own dual:

xT y ≥ 0 for all x � 0 ⇐⇒ y � 0.

We call such a cone self-dual.

Example 2.24 Positive semidefinite cone. On the set of symmetric n × n matrices
Sn, we use the standard inner product tr(XY ) =

∑n

i,j=1
XijYij (see §A.1.1). The

positive semidefinite cone Sn
+ is self-dual, i.e., for X, Y ∈ Sn,

tr(XY ) ≥ 0 for all X � 0 ⇐⇒ Y � 0.

We will establish this fact.

Suppose Y �∈ Sn
+. Then there exists q ∈ Rn with

qTY q = tr(qqTY ) < 0.

Hence the positive semidefinite matrix X = qqT satisfies tr(XY ) < 0; it follows that
Y �∈ (Sn

+)
∗.

Now suppose X, Y ∈ Sn
+. We can express X in terms of its eigenvalue decomposition

as X =
∑n

i=1
λiqiq

T
i , where (the eigenvalues) λi ≥ 0, i = 1, . . . , n. Then we have

tr(Y X) = tr

(
Y

n∑

i=1

λiqiq
T
i

)
=

n∑

i=1

λiq
T
i Y qi ≥ 0.

This shows that Y ∈ (Sn
+)

∗.

Example 2.25 Dual of a norm cone. Let ‖ · ‖ be a norm on Rn. The dual of the
associated cone K = {(x, t) ∈ Rn+1 | ‖x‖ ≤ t} is the cone defined by the dual norm,
i.e.,

K∗ = {(u, v) ∈ Rn+1 | ‖u‖∗ ≤ v},

Figure 14: On the left, the halfspace with inward normal y contains
the cone K and so y ∈ K∗. While on the right, the halfspace with
normal z does not contain K and so z /∈ K∗. Source: Boyd.

From the definition of a dual cone it is clear that if y ∈ K∗ and x ∈ K the angle between x and y
is less than 90 degrees.

K K K
+ K

K*

K

Ex. 1)

Ex. 2)

K K

+

K

K*

Ex. 3)

L:  x  T

L*

0
y    = 0

Figure 15: Examples of dual cones construction using the orthogonal
vectors of the original cone.
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A few examples of dual cones are

• If K = Rn+ then K∗ = K.

• If K is a second order cone, then K∗ = K

• If K is a PSD cone, then K∗ = K.

• If K is a proper cone, then K∗∗ = K.

For a PSD cone K, then its dual cone is defined as the set

K∗ = {Y | Tr(XY ) ≥ 0,∀X ∈ K}

Example 1
We will prove the second point that if K is a second order cone, then K∗ = K. Let Ksoc ∈ Rn
denote a second-order cone. In other words

Kn = {(x, t) ∈ Rn−1 × R+ : t ≥ ||x||2}

Another way to denote a second-order cone is with a vector x ∈ Rn such that xn ≥ ||xn−1
1 ||2. Here

we let xk1 ∈ Rk denote the vector with entries x1, . . . , xk from x ∈ Rn.

Showing that Ksoc ⊆ K∗soc and K∗soc ⊆ Ksoc, shows that K∗soc = Ksoc exactly.

Show Ksoc ⊆ K∗soc. Let s, x ∈ Ksoc. Then

s>x = snxn −
n−1∑

i=1

sixi ≥ snxn − ||sn−1
1 ||2||xn−1

1 ||2 ≥ 0

where the first inequality comes from Cauchy-Schwartz inequality and the second inequality follows
from assumption that s, x ∈ Ksoc. Since this is true for any x ∈ Ksoc, this shows that s ∈ K∗soc.

Show K∗soc ⊆ Ksoc. Assume s ∈ K∗soc and x ∈ Ksoc. There are two cases to consider - (1) when
x1, . . . , xn−1 = 0 and xn = a > 0 and (2) when x1, . . . , xn−1 6= 0 with xn = t ≥ ||xn−1

1 ||2.

• Case 1: construct s such that s1, . . . , sn−1 = 0. Then

s>x ≥ 0⇔ sna ≥ 0⇔ sn ≥ ||sn−1
1 ||2 ⇔ s ∈ Ksoc

• Case 2: construct s such that si = −xi for i = 1, . . . , n− 1. Then

s>x = snt−
n−1∑

i=1

s2
i = snt− ||sn−1

1 ||22 ≥ 0⇔ sn ≥
||sn−1

1 ||2
t

Then set sn ≥ ||sn−1
1 ||2
t to finally create s such that sTx ≥ 0 for all x satisfying case 2

conditions. Since sn ≥ ||sn−1
1 ||2 by construction, s ∈ Ksoc.
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7.6 Theorem of Alternatives for Linear Strict Generalized Inequalities

Assume K is a proper cone, then 6 ∃ x ∈ Rn such that Ax �K b if and only if:

∃λ 6= 0, λ �K∗ 0, A>λ = 0, λ> ≤ 0

This is a general version of the theorem of alternatives for strict inequalities. The proof is similar,
requiring the affine set C = {b − Ax : x ∈ Rn} and D = int(K). The condition of infeasibility
implies that those sets do not intersect and so a separating hyperplane can be found.

8 Duality

Consider the following generic, possibly non-convex, optimization problem

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(17)

with optimal objective value p∗. We associate a scalar variable to each constraint:

fi(x) ≤ 0 ← λi

hj(x) = 0 ← νj

We define the Lagrangian as L : Rn × Rm × Rp as

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +

p∑

j=1

νjhj(x)

with dom(L) = D×Rm×Rp, where D is the original domain of the optimization problem and λi’s
and νj ’s are called the Lagrange multipliers or dual parameters.
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Theorem 7.1 For an optimization problem in the standard form in Equation 17, as long as
λi ≥ 0 for i = 1, . . . ,m, then

g(λ, ν) ≤ p∗
where g(λ, ν) = infx∈D L(x, λ, ν).

A direct consequence of this is that d∗ = maxλ≥0,ν g(λ, ν) ≤ p∗.

Proof.
Let x∗ denote the optimal solution to the original problem in Equation 17.

f0(x∗) ≥ f0(x∗) +

m∑

i=1

λi︸︷︷︸
≥0

fi(x
∗)︸ ︷︷ ︸

≤0

+

p∑

j=1

νjhj(x
∗)︸ ︷︷ ︸

=0

≥ min
x
L(x, λ, ν) = g(λ, ν)

where the second inequality is due to the fact that x∗ does not necessarily equal
arg maxx L(x, λ, ν).

Theorem 7.2 −g(λ, ν) is always convex for arbitrary functions fi’s and hj ’s.

Proof.
g(λ, ν) = minx L(x, λ, ν) is the pointwise minimum of affine functions in λ and ν. Since an
affine function is both convex and concave, and the pointwise minimum of concave functions
is concave. A function f is concave if and only if the set {(x, y) : y ≤ f(x)} is convex. The
pointwise minimum of concave functions f(x) = mini fi(x) results in the set {(x, y) : y ≤
f(x)} that is the intersection of the sets {(x, y) : y ≤ fi(x)} for all i. Since the intersection
of convex sets is convex, {(x, y) : y ≤ f(x)} is convex, implying that f(x) is concave. The
negative of a concave function is convex.

The dual solution is found as d∗ = max
λ≥0,ν

g(λ, ν).

Theorem 7.3 If weak duality holds

p∗ ≥ d∗
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Theorem 7.4 The dual problem is always convex even if its associated primal is not convex.

Proof.
From Theorem 7.2, −g(λ, ν) is always convex. The dual problem is

max
λ

g(λ, ν)

λ ≥ 0

which can be written as a convex optimization problem in standard form

min
λ

− g(λ, ν)

λ ≥ 0

Example 1
Find the dual problem to a LP. The standard LP problem is stated as

min
x∈Rn

c>x

Ax = b

x ≥ 0

The Lagrangian is

L(x, λ, ν) = c>x−
m∑

i=1

λixi + ν>(Ax− b) = −b>ν + (c+A>ν − λ)>x

The dual problem is then found as

g(λ, ν) = inf
x
L(x, λ, ν) = −b>ν + inf

x
(c+A>ν − λ)>x

which leads to the dual problem

g(λ, ν) =

{
−b>ν if c+A>ν − λ = 0

−∞ otherwise

Maximizing the dual problem is another LP

min
ν,λ

− b>ν
c+A>ν − λ = 0

λ ≥ 0

Example 2
We start by reformulating Equation 13 in the max-cut problem into standard form
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min
x∈Rn

xTQx

s.t. x2
i − 1 = 0, i = 1, . . . , n

(18)

where Q = −L. The Lagrangian is

L(x, ν) = x>Qx+
n∑

i=1

νi(x
2
i − 1) = x>


Q+




ν1 0
ν2

. . .

0 νn





x−

n∑

i=1

νi

which has the dual objective

g(ν) =





−
n∑

i=1

νi if Q+




ν1 0
. . .

0 νn


 � 0

−∞ otherwise

Example 3
Find the dual problem of a QP. One expression of a QP is

min
x

1

2
x>Px+ q>x+ d

s.t. Ax � b
Cx = h

Assume without loss of generality that C = 0, q = 0, and d = 0. The Lagrangian is

L(x, λ) =
1

2
x>Qx+ λ>(Ax− b)

Solving for x∗

∇xL(x, λ) = Px+A>λ = 0

⇒ x∗ = −P−1A>λ

The dual objective then becomes

g(λ) = −1

2
λ>AP−1A>λ− λ>b

which is a quadratic objective. Thus the dual problem of a QP is another QP.

Exercise 1
Show that the dual of a QCQP is a SOCP.

Exercise 2
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Show that the dual of a SOCP is another SOCP.

Solution:
Consider a SOCP in standard form:

min
x

c>x

s.t. ||Aix+ bi||2 ≤ c>i + di, i = 1, . . . ,m

We have:

p∗ = min
x

max
λ≥0

c>x+

m∑

i=1

λi(||Aix+ bi||2 − c>i − di)

= min
x

max
λ≥0

max
||ui||2≤1,i=1,...,m

c>x+

m∑

i=1

λi[u
>
i (Aix+ bi)− c>i − di]

= min
x

max
||ui||2≤λi,i=1,...,m

c>x+
m∑

i=1

u>i (Aix+ bi)− λi(c>i x+ di)

on which, in the second line, we use the dual norm representation of the 2-norm. We then compute
the dual problem as:

d∗ = max
||ui||2≤λi,i=1,...,m

min
x
c>x+

m∑

i=1

u>i (Aix+ bi)− λi(c>i x+ di)

= max
||ui||2≤λi,i=1,...,m

m∑

i=1

(
u>i bi − λidi

)
+ min

x
x>
(
c+

m∑

i=1

A>i ui − λici
)

= max
u,λ

m∑

i=1

(
u>i bi − λidi

)

s.t. ||ui||2 ≤ λi, i = 1, . . . ,m

c+

m∑

i=1

(
A>i ui − λici

)
= 0

that is an SOCP.

Recall the conjugate function defined in Equation 4. The conjugate function and dual objective
are closely related. Consider the generic optimization problem with linear inequality and equality
constraints.

min
x

f0(x)

s.t. Ax � b
Cx = d

The dual objective is
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g(λ, ν) = min
x
f0(x) + (A>λ+ C>ν)>x+ (−λ>b− ν>d)

= −max
x

(
(−A>λ− C>ν)>x− f0(x)

)
+ (−λ>b− ν>d)

= −f∗0 (−A>λ− C>ν) + (−λ>b− ν>d)

Thus, the dual optimization problem can be written in terms of the conjugate function when the
constraints are linear.

max
λ,ν

− f∗0 (−A>λ− C>ν) + (−λ>b− ν>d)

λ ≥ 0
(19)

The domain of g follows from the domain of f∗0

dom g = {(λ, ν) | −A>λ− C>ν ∈ dom f∗0 }

Example 4. Recall from Example 2 of section 3.1 that the conjugate of f(x) = ||x|| is

f∗(y) =

{
0 ||y||∗ ≤ 1

∞ otherwise

The dual problem of the primal minimization problem

min
x

||x||
Ax = b

can be rewritten in terms of the conjugate of ||x|| by Equation 19 as

max
ν

− f∗0 (−A>ν)− b>ν

||−A>ν||∗ ≤ 1

Duality gap. Let p∗ be the optimal value of the primal problem and d∗ the optimal value of its
dual. We define the duality gap as

duality gap = p∗ − d∗
When duality gap is equal to zero, we say that strong duality holds.

Definition. Consider an optimization problem in standard form as

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

with no convexity assumption and associated dual multipliers λi. We say λ∗ ≥ 0 is called a
geometric multiplier if
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p∗ = min
x
L(x, λ∗)

8.1 Geometric Interpretation of Duality

For simplicity we consider an optimization problem with one constraint

min
x

f0(x)

s.t. f1(x) ≤ 0,

Consider the region in the (u, t) plane defined by:

G = {f1(x), f0(x)}
evaluating over x, G defines a region in the (u, t) space. The optimal value p? can be found by
finding the minimum point projected over the t axis, that satisfies u ≤ 0 (that is equivalent as
f1(x) ≤ 0). This is depicted in the following figure

G
p

t

u

Figure 16: Optimal value p? (t = f0(x?)) in the (u, t) space.

Now, recall that the dual function is defined as

g(λ) = min
x
f0(x) + λf1(x) = min

(u,t)∈G
t+ λu

for a given λ ≥ 0. For an α not necessary equal to g(λ) and a given λ ≥ 0, α = t+λu⇒ t = α−λu
specifies a line in (u, t) space. Geometrically, the search for g(λ) can be thought of as searching for
the minimum α such that the line t = α − λu still touches G, since there must be a x that such
(u, t) is possible. This concept is illustrated in Figure 17.
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G

λu + t =

t

u

α
α

Figure 17: Interpretation of line t+ λu = α.

By definition, d∗ = maxλ≥0 min(u,t)∈G t + λu. Once α1, . . . , αn, . . . and their corresponding lines
are determined, d∗ is found as maxi αi and the solution is the corresponding λ ≥ 0.

This concept is depicted in Figure 18, where the blue line shows the best supporting hyperplane
that achieves d?. Even though the red line achieves a better intersection on the t-axis, it will not
be among the lines considered for d∗ because the line can achieve a lower intercept by translating
further in the southwest direction. Black lines show other valid supporting hyperplanes, but that
do not achieve d?.

G
p
d

t

u

Figure 18: Finding the optimal value for the dual problem. The blue
line achieves d?, while the red line is not a valid supporting hyperplane.
As can be observed, there exists a duality gap p?− d? in this problem.

Theorem 7.1.1 If there is no duality gap, the set of geometric multipliers is equal to the
set of optimal dual solutions:

λ∗ = arg max
λ≥0

g(λ)
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Theorem 7.1.2 If there is a duality gap, even though the set of dual multipliers may not
be empty, the set of geometric multipliers is empty.

8.2 Strong Duality

Consider a generic optimization problem

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

Assume λ∗ ≥ 0 is a geometric multiplier, then

p∗ = f0(x∗)

= min
x
L(x, λ∗)

= min
x
f0(x) +

m∑

i=1

λ∗i fi(x)

≤ f0(x∗) +
m∑

i=1

λ∗i︸︷︷︸
≥0

fi(x
∗)︸ ︷︷ ︸

≤0

≤ f0(x∗)

where the first equality follows from definition of primal optimal value, the second and third equali-
ties follow from the definition of geometric multiplier and Lagrangian respectively, the inequality on
the fourth line follows from the fact that possibly x∗ 6= arg minx L(x, λ∗), and the inequality of the
fifth line follows from the fact λ∗i ≥ 0 and fi(x

∗) ≤ 0 for i = 1, . . . ,m. However, since p∗ = f0(x∗),
this implies that

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

and this is a condition called Complementary Slackness.
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Theorem 7.2.1 The existence of a geometric multiplier implies no duality gap.

Proof

1. Weak duality implies p∗ ≥ d∗.

2. p∗ = min
x
L(x, λ∗) ≤ max

λ≥0
min
x
L(x, λ) = d∗

To see why this is true, notice that maxλ≥0 minx L(x, λ) < minx L(x, λ∗) cannot be
true. Assume the strict inequality is true and let x◦ = arg minx L(x, λ∗). Building off
of the geometric interpretation of duality, the solution of maxλ≥0 minx L(x, λ) can be
interpreted as arg maxi minx L(x, λi). Thus, at least for λi = λ∗, the inner minimization
would pick x = x◦, which contradicts the assumption.

Thus, p∗ = d∗.

8.3 Necessary and Sufficient Conditions for Zero Duality Gap

Consider the point (x∗, λ∗) that exists and satisfies

(1) Primal feasibility: fi(x
∗) ≤ 0, i = 1, . . . ,m

(2) Dual feasibility: λ∗i ≥ 0, i = 1, . . . ,m.

(3) Complementary slackness: λ∗i fi(x
∗) = 0, i = 1, . . . ,m

(4) Lagrangian minimization: L(x∗, λ∗) = f0(x∗) = min
x
L(x, λ∗).

Then, there is no duality gap. If equality constraints exist then hj(x) for j = 1, . . . , p are included
accordingly.

Recall that condition 4 implies condition 3, but the converse is not true. The converse is not true
because x∗ satisfying complementary slackness alone does not guarantee that f(x∗) = p∗. Observe
that checking condition (4) is as hard as solving the primal problem itself. A necessary condition
for (4) is given by:

(4′) Lagrangian Stationarity condition:

∇L(x, λ∗)
∣∣∣
x=x∗

= 0

⇒ ∇f0(x∗) +
m∑

i=1

λ∗i∇fi(x∗) = 0

Conditions (1), (2), (3) and (4′) are also called Karush-Kuhn-Tucker (KKT) conditions. For
any optimization problem where strong duality holds, the KKT conditions are necessary for optimal
primal-dual pair (x∗, λ∗). If the problem is convex under constraint qualifications, then the KKT
conditions are sufficient to establish optimality of primal-dual pair (x∗, λ∗).
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8.4 Local Behaviour

Consider an optimization problem with equality constraints

min
x

f0(x)

s.t. hi(x) = 0, i = 1, . . . , p

We want to find a local solution, and for that purpose we will use local analysis. Consider the point
x∗, we are interested in studying the conditions under which x∗ is a local minimum, by analyzing
the feasible set around x∗ given by its tangent plane. Some examples of tangent planes are depicted
on the following figures.

x

x

x

1

2

*

Figure 19: Tangent plane for h(x) = x2
1 + x2

2 − 1.

x*

0

Figure 20: Tangent plane for h(x) = x2
1 + x2

2 + x2
3 − 1.
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x*

x

x

1

3

x2

Figure 21: Tangent plane for h(x) = x2
1 + x2

2 − 1, x ∈ R3.

x

x

1

3

x2

x3 = 1
x*

Figure 22: Tangent plane for h1(x) = x2
1 +x2

2−1 and h2(x) = x3−1.

How to find a tangent plane?

Definition. A point x∗ is called regular if vectors ∇h1(x∗),∇h2(x∗), . . . ,∇hp(x∗) are linearly
independent at this single point. Briefly, vectors v1, . . . vn are linearly dependent if there exists a
set of coefficients a1, . . . , an where not all of them is zero, such that a1v1 + · · ·+anvn = 0 is possible.

Definition. If x∗ is regular, then the tangent plane of feasible set at x∗ is given by

{
∆x ∈ Rn : ∇hi(x∗)>∆x = 0, i = 1, . . . , p

}

Where ∆x can be viewed as a small perturbation. This comes from the Taylor approximation near
x∗

hi(x
∗ + ∆x) = hi(x

∗) +∇hi(x∗)>∆x+ higher order terms

since hi(x
∗) = 0, and we want hi(x

∗ + ∆x)→ 0 near x∗, then we require ∇hi(x∗)>∆x = 0.
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Example 1. The tangent plane for h(x) = x2
1 + x2

2 + x2
3 − 1 is given by ∇h(x)> = (2x1, 2x2, 2x3).

Following definition of linear independence mentioned above, the one vector ∇h(x) is linearly
dependent if there exists a 6= 0 such that a∇h(x) = 0. However, this is only true if x = 0, which
is not feasible because h(0) 6= 0. Thus, because ∇h(x) cannot be linearly dependent with feasible
points, all feasible points are regular. The tangent plane at a feasible point x∗ is

{
∆x ∈ R3 : x∗1∆x1 + x∗2∆x2 + x∗3∆x3 = 0

}

where the coefficient of 2 is dropped.

Example 2. For h1(x) = x2
1 + x2

2 − 1 and h2(x) = x3 − 1 we have

∇h1(x) =




2x1

2x2

0


 ∇h2(x) =




0
0
1




The only points on which these vectors are linearly dependent occurs at x = 0, but it is not a
feasible point. Thus, all feasible points are regular. The tangent plane at the feasible point x∗ is
defined by:

{
∆x ∈ R3 : x∗1∆x1 + x∗2∆x2 = 0, ∆x3 = 0

}

Consider a local analysis of the objective function around x∗

min
x

f0(x)

s.t. x ∈ D
−→

min
∆x

f0(x∗ + ∆x)

s.t. ∆x ∈ tangent plane at x∗ and ∆x small

and so

f0(x∗ + ∆x) = f0(x∗) +∇f0(x∗)>∆x+ h.o.t.

≥ f0(x∗) by local optimality condition

Theorem 7.4.1 If x∗ is regular and a local minimum, then for every ∆x such that
∇hi(x∗)>∆x = 0, i = 1, . . . , p, the term ∇f0(x∗)>∆x is nonnegative, i.e. ∇f0(x∗)>∆x ≥ 0.

Since ∆x and −∆x are both valid perturbations, the constraint from Theorem 7.4.1 implies that
∇f0(x∗)>∆ = 013. Since ∇hi(x∗)>∆x = 0 for i = 1, . . . , p for every small ∆, it must be the case
that ∇f0(x∗) must lie in the same subspace spanned by ∇hi(x∗) for i = 1, . . . , p. This leads to
Theorem 7.4.2.

13If ∇f0(x∗)>∆ > 0, then ∇f0(x∗)>(−∆) < 0, which violates condition specified in Theorem 7.4.1.
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Theorem 7.4.2 First order necessary optimality condition. Under the conditions of
Theorem 7.4.1, ∃ ν∗1 , . . . , ν∗p such that

∇f0(x∗) +

p∑

i=1

ν∗i∇hi(x∗) = 0

that is, the gradient of f0 at a local optimum x∗ is a linear combination of the gradient of
constraints.

∇h1(x
∗)

∇h2(x
∗)

∆x

∆x

Figure 23: Tangent plane formed by ∇h1(x∗) and ∇h2(x∗). As can
be seen, ∆x is orthogonal to the tangent plane.

Figure 23 depicts the idea in Theorem 7.4.2.

From Theorem 7.4.2 we can derive the second order necessary optimality condition for local optimal
solution x∗. Starting from the Taylor series expansion

f0(x∗ + ∆x) = f0(x∗) +∇f0(x∗)>∆x+
1

2
∆x>∇2f0(x∗)∆x+ · · ·

ν∗1h1(x∗ + ∆x) = ν∗1h1(x∗) + ν∗1∇h1(x∗)>∆x+
ν∗1
2

∆x>∇2h1(x∗)∆x+ · · ·
...

...

ν∗php(x
∗ + ∆x) = ν∗php(x

∗) + ν∗p∇hp(x∗)>∆x+
ν∗p
2

∆x>∇2hp(x
∗)∆x+ · · ·

We are interested in adding all the previous equations. Note that hi(x
∗) and hi(x

∗ + ∆x) are all
equal to zero ∀i = 1, . . . , p when x∗ is feasible. As discussed previously, ∇f0(x∗)>∆x = 0. By
Theorem 7.8,

∑p
i=1 ν

∗
i∇hi(x∗) = 0. Thus, adding the previous equations, yields
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f0(x∗ + ∆x) = f0(x∗) +
1

2
∆x>∇2f0(x∗)∆x+

1

2

p∑

i=1

ν∗i ∆x>∇2hi(x
∗)∆x+ h.o.t.

≥ f0(x∗) by local optimality

and so

∆x>
(
∇2f0(x∗) +

p∑

i=1

ν∗i∇2hi(x
∗)

)
∆x ≥ 0

Theorem 7.4.3 Second order necessary optimality condition. Under the conditions
of Theorem 7.4.2 and Theorem 7.4.1, we have

M = ∆x>
(
∇2f0(x∗) +

p∑

i=1

ν∗i∇2hi(x
∗)

)
∆x ≥ 0

for every ∆x such that ∇hi(x∗)>∆x = 0, i = 1, . . . , p for local minimum solution x∗.

A particular case when there are no constraints:

∆x>∇2f0(x∗)∆x ≥ 0 ⇒ ∇2f0(x∗) � 0

If M = 0, the difference between f0(x∗+ ∆x) and f0(x∗) should be quantified by third order terms
or higher.

Theorem 7.4.4 Second order sufficient optimality condition. If x∗ is regular and
feasible, for which ∃ ν∗1 , . . . , ν∗p , such that first order optimality condition is satisfied and
M > 0 for every ∆x in the tangent plane at the point x∗ such that ∆x 6= 0, then x∗ is a
local minimum.

If the optimization problem is unconstrained, Theorem 7.11 implies that the conditions

∇f0(x∗) = 0 and ∇2f0(x∗) � 0

are sufficient to establish x∗ as a local minimum.

How to check second order conditions?

Tangent plane = T = {∆x : ∇hi(x∗)>∆x = 0, i = 1, . . . , p}

Note that dim(T ) = n − p because x∗ is a regular point. Pick n − p linearly independent vectors
in the tangent plane e1, e2, . . . , en−p ∈ Rn.

Define E = [e1, e2, . . . , en−p] ∈ Rn×(n−p). The tangent plane can then be re-expressed as

T = {Ey : y ∈ Rn−p}
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Then, the second order necessary condition reduces to

E>
(
∇2f0(x∗) +

p∑

i=1

ν∗i∇2hi(x
∗)

)
E � 0

and the second order sufficient condition to

E>
(
∇2f0(x∗) +

p∑

i=1

ν∗i∇2hi(x
∗)

)
E � 0

8.5 Generalization to Inequality Constraints

In this section we apply the first order and second order necessary optimality conditions to opti-
mization problems with inequality as well as equality constraints. Consider the general optimization
problem

min
x∈Rn

f0(x)

s.t. f1(x) ≤ 0

h1(x) = 0

(20)

can be reformulated with only equality constraints as

min
x∈Rn,z∈R

f0(x)

f1(x) + z2 = 0← λ1

h1(x) = 0← ν1

where λ1 and ν1 are associated Lagrangian multipliers. Define x̃ =

[
x
z

]
∈ Rn+1 along with

• f̃0(x̃) = f0(x)

• h̃1(x̃) = h1(x)

• h̃2(x̃) = f1(x) + z2

If x̄∗ is a regular and local minimum, then it is necessary by the first order necessary optimality
condition that

∇f̃0(x̃∗) + ν∗1∇h̃1(x̃∗) + ν∗2∇h̃2(x̃∗) = 0

where λ∗1 = ν∗2 . The above can be re-expressed as
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[
∇f0(x∗)

0

]
+ ν∗1

[
∇h1(x∗)

0

]
+ ν∗2

[
∇f1(x∗)

2z∗

]
= 0 ∈ Rn+1

The only way the last coordinate is 0 is if 2λ∗1z
∗ = 0, which implies that λ∗1(z∗)2 = 014. By the

required constraint, f1(x∗) + z2 = 0 ⇒ λ1(f1(x∗) + z2) = 0. Since λ1z
2 = 0, then λ1f1(x∗) = 0,

which is a complementary slackness condition for local optimality of x∗. From the second order
optimality condition

(∆x̃)>
(
∇2f̃0(x̃∗) + ν∗1∇2h̃1(x̃∗) + ν∗2∇2h̃2(x̃∗)

)
∆x̃ ≥ 0

where

∇2f̃0(x̃∗) =

[
∇2f0(x∗) 0

0 0

]
, ∇2h̃1(x̃∗) =

[
∇2h1(x∗) 0

0 0

]
, ∇2h̃2(x̃∗) =

[
∇2f1(x∗) 0

0 2

]

which leads to

∆x̃>
[
∇2f0(x∗) + ν∗1∇2h1(x∗) + λ∗1∇2f1(x∗) 0

0 2λ∗1

]
∆x> ≥ 0

which implies that 2λ∗1 ≥ 0 must be true. If x∗ is regular, then x̃∗ is also regular for the reformulated
problem. Consider the two cases

1. z∗ = 0 implies that f1(x) constraint, and so ∇h1(x∗) and ∇f1(x∗) are linearly independent
from the regularity of x∗, that implies that ∇h̃1(x̃∗) and ∇h̃2(x̃∗) are linearly independent.

2. z∗ 6= 0 implies that f1(x) is not binding. Then from the regularity of x∗ we know that
∇h1(x) 6= 0. The previous, and that z∗ 6= 0, implies that ∇h̃1(x̃∗) and ∇h̃2(x̃∗) are linearly
independent.

Taken together, this leads the first and second order necessary condition for local optimality for
optimization problems with equality and inequality constraints.

14For λz = 0, either λ = 0 or z = 0. If λ = 0, then λz2 = 0. Similarly if z = 0, then λz2 = 0
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Theorem 7.5.1 First order necessary condition for optimization problem of the form

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , p

If x∗ is regular and a local minimum, then ∃ λ∗1, λ∗2, . . . , λ∗m and ν∗1 , . . . , ν
∗
p such that the

following conditions are necessary

1. λ∗i ≥ 0 i = 1, . . . ,m

2. Complementary slackness condition: λ∗i fi(x
∗) = 0 for j = 1, . . . , p

3. ∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi(x∗) +

∑p
j=1 ν

∗
i∇hi(x∗) = 0

Theorem 7.5.2 For the optimization problem form in Theorem 7.5.1, the second order
necessary conditions for regular point x∗ to be a local minimum are

1. Conditions 1, 2, and 3 stated in Theorem 7.5.1.

2. (∆x)>
(
∇2f0(x∗) +

∑m
i=1 ν

∗
i∇2hi(x

∗) +
∑p

j=1 λ
∗
j∇2fj(x

∗)
)

∆x ≥ 0

For every ∆x in the tangent plane at x∗

Theorem 7.5.3 Second order sufficient condition for local optimality of x∗ for optimization
problem of equality and inequality constraints. If x∗ is feasible and a regular point for which
∃ λ∗1, λ∗2, . . . , λ∗m and ν∗1 , . . . , ν

∗
p such that conditions 1, 2, and 3 from Theorem 7.5.2 are

satisfied, and condition 4 from Theorem 7.5.2 is satisfied in a strict way whenever ∆x 6= 0
and ∆x ∈ T , then these conditions are sufficient for x∗ to be a local minimum. Where

T = {∆x | ∇hi(x∗)>∆x = 0 i = 1, . . . , p;

∇fi(x∗)∆x = 0, if fi(x
∗) = 0 and λi > 0}

The second order sufficient condition guarantees strict local optimality of x∗.

In T we are considering only the active constraints that are non degenerate (which satisfies λ > 0).
T is bigger than the tangent plane, since it has less constraints.

For an optimization problem with inequality and equality constraints as in Equation 20 but with
m inequality constraints and p equality constraints, a inequality constraint fi(x

∗) ≤ 0 is active if
fi(x

∗) = 0 and λ∗i ≥ 0. If these conditions are true, then ∇fi(x∗)>∆x = 0, for ∆x ∈ T and i = 0
and active inequality constraints.

Below are definitions of a regular point x∗.

• Point x∗ is regular if gradients of equality and all active inequality constraints are linearly
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independent.

• Tangent plane at x∗ is the set of all ∆x ∈ Rn that are orthogonal to gradients of equality and
active inequality constraints.

8.6 Sensitivity Analysis

Consider the perturbed version of a general optimization problem in Equation 17

min
x∈Rn

f0(x)

s.t. fi(x) ≤ ci, i = 1, . . . ,m

hj(x) = dj , j = 1, . . . , p

Define p∗(c, d) as the optimal value of the perturbed problem. Then p∗ = p∗(0, 0). If the original
problem in Equation 17 is convex then p∗(c, d) is convex15.

Example 1
Consider the original convex optimization problem

min
x∈R

x

s.t. x2 ≤ 0

which has solution x∗ = 0 and optimal value p∗(0, 0) = 0. If perturbation is introduced such that
the constraint is replaced with x2 ≤ c, then −√c ≤ x ≤ √c. Then the solution is

p∗(c) =

{
−√c c ≥ 0

infeasible c < 0

which is a convex function in c.

Assume second order sufficient condition is satisifed for x∗ and no constraint is degenerate16. Then
there exists a ball centered around (0, 0) such that for every (c, d) ∈ ball, we have

1. p∗(c, d) exists.

2. There is a solution x∗(c, d) such that x∗(0, 0) = x∗ and continuous17.

3. ∇cp∗(c, d)
∣∣∣
(0,0)

= −λ∗

4. ∇dp∗(c, d)
∣∣∣
(0,0)

= −ν∗

15The proof is given on http://www.ifp.illinois.edu/~angelia/L10_sensitivity.pdf
16A degenerate inequality constraint is an active constraint fi(x

∗) = 0 with dual variable λ∗i = 0.
17By continuous, meaning lim

(c,d)→(0,0)
x∗(c, d) = x∗(0, 0)
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For small perturbations (c, d)

p∗(c, d) = min
x

max
λ≥0,ν

f0(x) +

m∑

i=1

λi(fi − ci) +

p∑

j=1

νj(hj(x)− dj)

= min
x


f0(x) +

m∑

i=1

λ∗i fi(x) +

p∑

j=1

ν∗j hj(x)


−

m∑

i=1

λ∗i ci −
p∑

j=1

ν∗j dj

= p∗ −
m∑

i=1

λ∗i ci −
p∑

j=1

ν∗j dj

Properties (3) and (4) above following naturally as a consequence. If λ∗i and ν∗j are small for
all i and j, then the perturbation doesn’t affect the solution p∗(c, d) from p∗ much. The second
order necessary condition stated in Theorem 7.5.2 involving Hessians is automatically satisfied for
a convex optimization problem because ∇2f0(x∗) � 0, ∇2fi(x

∗) � 0 for all i, and ∇2hj(x
∗) = 0 for

all j since hj(x)′s are linear.

The second order sufficient condition according to Theorem 7.5.3 requires strict � 0, but this strict
condition is not required for convex optimization problem. For example, since a LP only involves
linear functions, all terms ∇2f0(x∗),∇2fi(x

∗),∇2hj(x
∗) = 0.

In summary:

1. If x∗ is regular and a local minimum, then first order optimality condition is satisfied.

2. If x∗ is regular, feasible, and satisfies first order optimality condition, then it is a global
minimum for convex optimization problems.

3. First order optimality condition is necessary and sufficient under regularity conditions for
convex optimization problems.

8.7 Slater’s Condition

Consider a convex optimization problem of the form in Equation 17. If a convex optimization
problem satisfies the KKT conditions, then L(x∗, λ∗, ν∗) = f0(x∗), due to complementary slackness
of primal feasibility. The stationarity condition of KKT and L(x∗, λ∗, ν∗) = f0(x∗) both imply
that minx L(x, λ∗, ν∗) = p∗, since first order conditions are sufficient for convex problems under
regularity conditions. This in turn implies that (λ∗, ν∗) are geometric multipliers.

For convex optimization problems, the regularity conditions on x∗ for establishing strong duality
can be replaced with Slater’s condition.

Definition 1: Slater’s condition is satisfied if ∃x̄ ∈ Rn that is feasible and fi(x̄) < 0 for all i. Note
x̄ is an arbitrary point, not necessarily optimal.

Definition 2: Weak form of Slater’s condition only requires feasible point to satisfy all nonlinear
inequalities in a strict way. In other words, strict condition does not need for affine inequality
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constraints.

Example 1
Consider the following constraints

x1 + x2 + x3 = 0

x1 + x2 ≤ 0

x2
1 + x2

3 ≤ 0

Then Slater’s condition requires strict inequality for the last two constraints while the weak form
of Slater’s condition requires strict inequality only for the last constraint.

Theorem 7.7.1

1. Weak duality always holds for convex and nonconvex problems.

2. Strong duality holds for convex optimization problems under weaker form of Slater’s
condition.

3. Under (2), if the optimal objective value is finite, then there is a dual solution.

Example 2

• min ex → x∗ = −∞, no solution.

• min−ex → optimal value is not finite.

• inf −1/x → x → 0+ → − 1/x → −∞ optimal value is not finite, but a solution can be
expressed as x→ 0+.

Let (p) refers to the primal problem and (d) to the dual problem. If Slater is satisfied, p∗ = d∗,
and implies

• If p∗ is finite and Slater’s condition is satisfied for primal problem, then ∃ finite (λ∗, ν∗).

• If d∗ is finite and Slater’s condition is satisfied for dual problem, then ∃ finite x∗.

Example 3: LP problems
Consider (p) a LP primal and its associated dual (d). The (p) of a LP is

min
x∈Rn

c>x

s.t. Ax = b

x � 0

From Example 1 of section 7, the dual problem of (p) is another LP
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min
ν,λ

− b>ν
c+A>ν − λ = 0

λ � 0

Which can be further simplified to

min
ν

− b>ν
c+A>ν � 0

since if c+A>ν � 0 is true, then there exists λ � 0 such that c+A>ν = λ.

We can use weaker Slater if ∃x̄ : Ax̄ = b, x̄ ≥ 0 (i.e. feasibility). In that case if (p) if feasible (or
(d) is feasible) then p∗ = d∗. In general we have the following cases:

p∗ =





+∞ : infeasible
finite : good
−∞ : unbounded from below

∧ d∗ =





+∞ : unbounded from above
finite : good
−∞ : infeasible

The 3 scenarios are:

i. p∗ = d∗ = +∞ ⇒ (p) is infeasible.

ii. p∗ = d∗ = −∞ ⇒ (d) is infeasible.

iii. p∗ = d∗ = finite ⇒ both (p) and (d) have solutions.

The only way that strong duality does not hold is if both problems are infeasible:

p∗ =∞ and d∗ = −∞ ⇒ gap = p∗ − d∗ = +∞

Theorem 7.7.2
A LP problem has a zero duality gap unless (p) and (d) are both infeasible.

Example 4
Consider the following non-convex optimization problem18

min
x∈Rn

(or max
x∈Rn

)
∑

i 6=j
xixj

s.t.
n∑

i=1

x2
i = n

This problem is easy to solve because of the equality

18The problem is non-convex because the feasible set is not convex.
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(
n∑

i=1

xi

)2

=
n∑

i=1

x2
i + 2

∑

i 6=j
xixj →

∑

i 6=j
xixj =

1

2



(

n∑

i=1

xi

)2

−
n∑

i=1

x2
i


 =

1

2

(
n∑

i=1

xi

)2

− n

2

The maximum, from Cauchy-Schwartz, is attained when 1 is colinear with x (that gives solution
x = 1 and x = −1), while the minimum is attained when 1>x = 0. For the purpose of this problem
we ignore the solution and write the Lagrangian as:

L(x, ν) =
∑

i 6=j
xixj + ν

(
n∑

i=1

x2
i − n

)

KKT conditions yield:

1) ∇xL(x, ν) =
∑

i 6=j
xj + 2νxi =

n∑

j=1

xj + (2ν − 1)xi = 0, i = 1, . . . , n.

2)
n∑

i=1

x2
i = n.

Where for the last equality of 1), xi is added to the first term and xi is subtracted from the
second term. Note that since there are no inequality constraints, additional conditions such as
complementary slackness do not apply (Theorem 7.5.1).

Depending on what ν is, there are two ways to satisfy 1):

i. 2ν − 1 = 0→ ν =
1

2
→

n∑

i=1

xi = 0.

ii. 2ν − 1 6= 0 → xi =
−∑n

j=1 xj

2ν − 1
, i = 1, . . . , n. This implies x1 = x2 = . . . = xn for a locally

optimal solution19

From the result of ii.), the equality constraint can be rewritten as nx2
i = n, which implies that

x2
i = 1. To satisfy xi = (−∑n

j=1 xj)/(2ν − 1) from ii) whether xi = 1 or xi = −1

a) If xi = 1 for every i, then

1 =
−n

2ν − 1
⇒ ν = −n− 1

2

b) If xi = −1 for every i, then

−1 =
n

2ν − 1
⇒ ν = −n− 1

2
19To see why xi = xj for all i 6= j, notice that 2ν − 1 = −∑n

j=1 xj/xi for all i. Regardless of whether xi = xj for
all i 6= j, the numerator on the right hand side will be the same for all i. However, if xi 6= xj for some i 6= j, then
the equality cannot be true for both i and j.
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For checking the second order optimality condition, we first check whether the regularity condition
that ∇h1(x), . . .∇hp(x) are linearly independent for all feasible x. In this example, this means
that:

α∇h1(x) = α




2x1
...

2xn


 = 0

for some α 6= 0. This is only true for x = 0, but x = 0 is not feasible. Thus, all feasible points are
regular.

Now we construct the tangent plane at x∗ = 1n as:

T = {∆x | ∇hi(x∗)>∆x→
n∑

i=1

∆xi = 0}

Recall that the tangent plane could be alternatively rewritten as

T = {Ey : y ∈ Rn−p}

where E ∈ Rn×n−p is a matrix whose columns are linearly independent and p is the number of
equality constraints.

To find E in this example we need to find n− 1 linearly independent vectors. Using

e1 =




1
−1
0
...
0
0



, e2 =




1
0
−1
...
0
0



, . . . en−1 =




1
0
0
...
0
−1




we can define E = [e1, e2, . . . , en−1].

Then, the second order condition can be written as

E>(∇2f0(x∗) + ν∗∇2hi(x
∗))E = E>







0 1 · · · 1 1
1 0 . . . 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0



− n− 1

2
diag(2)



E

= E>(1n1
>
n − I − (n− 1)I)E

where ν∗ = −(n− 1)/2 as derived previously. Note that 1>nE = 0 and so:
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E>(∇2f0(x∗) + ν∗∇2hi(x
∗))E = −E>(−nI)E

= −nE>E

= −n




2 1 . . . 1 1
1 2 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 2




= −n(1n1
>
n + I)

≺ 0

Then, the second order condition is sufficient for local maximization. The same E works for x∗ = −1
(since they yield the same tangent plane

∑n
i=1 ∆xi = 0). Thus, for x∗ = −1n

E>(∇2f0(x∗) + ν∗∇2hi(x
∗))E ≺ 0

which implies the second order sufficient optimality condition is met if the optimization problem
was a maximization instead of a minimization problem.

Considering the case when 2ν − 1 = 0

n∑

i=1

x2
i = n ∧

n∑

i=1

xi = 0

In R2 (n = 2) this is the intersection of the line x2 = −x1 and the circle x2
1 + x2

2 = 2. This yields
two isolated points given by x(1) = (1,−1) and x(2) = (−1, 1) that achieves local minima.

In the case of Rn with n ≥ 3, the two constraints are the intersection of a hyperplane with a n-
sphere, that generate points that are not isolated. Since we have first order optimality condition for
non isolated points, the second order sufficient conditions cannot be satisfied for n ≥ 320. However,
it can be checked that the second order necessary condition for local minima is satisfied for these
points. Moreover, we know that

∑

i 6=j
xixj =

1

2

(
n∑

i=1

xi

)2

︸ ︷︷ ︸
≥0

− 1

2

(
n∑

i=1

x2
i

)

︸ ︷︷ ︸
=n

≥ 0− n

2

on which the equality holds when
∑n

i=1 xi = 0 is attained. Thus, these points given by the
intersection of the hyperplane and n-sphere are global minima with optimal value −n/2.

In addition, the previously found points 1n and −1n that are local maxima are actually global
maxima, since

1. We know that all feasible points are regular and we have analyzed every possible stationary

20The reason for this is not explicitly discussed in class, but a potential explanation for this is that if the second
order sufficient conditions are satisfied at a given point, then the neighboring points will yield a higher objective
value. However, this implication is not compatible with the first order conditions of local optimality.
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point from the KKT conditions, that are necessary for local optimality.

2. The feasible set is a compact set (it is closed since it contains its boundary and it is bounded
since it its contained in the ball of radius n). Under these conditions a global solution exists
(see Theorem 7.7.3)

3. Both 1n and −1n give the same optimal objective value n(n−1)/2. Since this value is greater
than any other stationary point, these points are actually global maxima.

Theorem 7.7.3 Extreme Value Theorem If f0(x) is continuous and the feasible set of
the optimization problem is compact, then there exists global minimum and maximum.

Proof: See Theorem 3.4 in
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Murphy.pdf

Example 5:
Consider the following QP optimization problem:

min
x

1

2
x>Px+ q>x+ r

s.t. Ax = b

where A ∈ Rm×n and P ∈ Sn+. If the problem is feasible, Weak Slater holds for QP and optimality
condition is equivalent to KKT:

• Primal feasibility: Ax = b

• Stationarity:

0 = ∇xL
(

1

2
x>Px+ q>x+ r + ν∗>(Ax− b)

)

= Px+ q +A>ν∗

Stationarity and primal feasibility can be compactly written as:
[
P A>

A 0

]

︸ ︷︷ ︸
M

[
x
ν∗

]
=

[
−q
b

]

There are 3 possibilities: i) no solution, ii) unique solution or iii) infinitely many solutions. If M is
invertible, then there exists a unique solution given by (x∗>, ν∗>)> = M−1(−q>, b>)>. Otherwise,
there are no solutions or infinitely many solutions.

Example 6:
Consider the following problem

min
x1,x2

x2

s.t. x1 = 0
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which is unbounded below for x2 = −∞.

Example 7:
Consider the following QCQP problem

min
1

2
x>P0x+ q>0 x+ r0

s.t.
1

2
x>Pix+ q>i x+ ri ≤ 0, i = 1, . . . ,m

(21)

If any Pi is not PSD, then the problem is non-convex, and non-zero duality gap in general does not
hold.

Theorem 7.7.4 S-procedure Consider a QCQP problem defined in (21). If m = 1 and
Slater holds (∃x̄ in the interior) then duality gap is zero, even for a non convex problem.

8.8 Theorem of Alternatives for Non-linear Case

Consider a (possibly non-convex) feasible set

X = {x | fi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}

We are interested in checking feasibility or infeasibility of the set. Consider the following optimiza-
tion problem

p∗ = min
x

0

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(22)

If p∗ = 0, then the problem is feasible, and if p∗ = +∞ our problem is infeasible.

Consider its dual function

g(λ, ν) = inf
x

m∑

i=1

λifi(x) +

p∑

j=1

νjhj(x)

and the dual problem

d∗ = max
λ≥0,ν

g(λ, ν)

If g(λ, ν) is strictly positive for some (λ, ν), then due to the linearity of g

g(αλ, αν) = αg(λ, ν) → +∞ as α→ +∞
Then
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d∗ =

{
+∞ if ∃(λ, ν) where g(λ, ν) > 0 s.t. λ ≥ 0

0 otherwise

We refer as condition (∗) if ∃(λ, ν) where g(λ, ν) > 0 s.t. λ ≥ 0. By weak duality we know that
p∗ ≥ d∗

i. If d∗ = +∞ then p∗ = +∞. This implies that if (∗) is feasible then the primal problem (22)
is infeasible.

ii. If p∗ = 0 then d∗ = 0. This implies that if the primal problem (22) feasible then (∗) is
infeasible.

iii. Cannot conclude anything about whether condition (∗) can be met if (22) is infeasible (p∗ =
∞) since d∗ could be zero or +∞. If (∗) is infeasible (d∗ = 0) nothing can be concluded about
(22), since p∗ could be zero or +∞. Both problems could be infeasible, but cannot be feasible
at the same time).

This is referred as weak alternatives, on which (22) and (∗) cannot be both feasible at the same
time.

Theorem 7.8.1 Theorem of Strong Alternatives Consider (22) to be convex. Equality
constraints must be affine and since we want Slater to hold, we focus on fi(x) < 0. Define

(p) :

{
fi(x) < 0, i = 1, . . . ,m
Ax = b

(∗) :





λ ≥ 0
ν 6= 0
g(λ, ν) ≥ 0

Then (p) is feasible if and only if (∗) is infeasible.

8.9 Duality Examples

8.9.1 Conic Duality

Consider the following linear conic program

min
x∈Rn

a>x

s.t. Ax = b

Aix− bi �Ki 0, i = 1, . . . ,m

where Aix− bi �Ki 0 represents that −(Aix− bi) ∈ Ki, where Ki is a proper cone.

To find its dual, let ν ∈ Rm be the dual variable associated to the constraint Ax − b = 0 and
λi ∈ Rni with λi �K∗i 0 be the associated dual variable to the constraint Aix− bi �Ki 0. The dual
variable λi is correctly constrained to belong to the dual cone K∗i because by definition of the dual
cone
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max
λ∈K∗

−λ>(Ax− b) =

{
0 if Ax− b ∈ K
∞ otherwise

If Ax− b ∈ K, then −λ>(Ax− b) ≤ 0, so choosing λ = 0 will yield optimal value 0. If Ax− b /∈ K,
then λ>(Ax− b) < 0 by definition, so the optimal objective value becomes∞. The above outcomes
allows proper construction of the Lagrangian function because if the constraint Aix − bi ∈ K is
violated, then the primal problem has objective value p∗ =∞ and is thus infeasible.

The dual function g(λ, ν) is defined as

g(λ, ν) = inf
x
L(x, λ, ν)

= inf
x
f0(x) +

m∑

i=1

λ>i fi(x) +

p∑

j=1

νihi(x)

= inf
x
a>x+

m∑

i=1

λ>i (bi −Aix) + ν>(Ax− b)

= inf
x

m∑

i=1

λ>i bi − ν>b+

(
a−

m∑

i=1

A>i λi +A>ν

)>
x

=

{∑m
i=1 λ

>
i bi − ν>b if a−∑m

i=1A
>
i λi +A>ν = 0

−∞ otherwise

Thus the dual problem becomes

max
λ,ν

(
m∑

i=1

λ>i bi

)
− ν>b

a−
m∑

i=1

A>i λi +A>ν = 0

λi �Ki 0, i = 1, . . . ,m

8.9.2 SDP Duality

Recall SDP in standard form

min
X∈Rn×n

tr(M0X)

s.t. tr(MiX) = ai i = 1, . . . ,m

X � 0

where M0,M1, . . . ,Mm ∈ Sn. We define the following dual variables for the constraints
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• Tr(MiX) = ai ← νi i = 1, . . . ,m

• −X � 0←W � 0

The dual variable W � 0 is correct because the dual cone of PSD matrices is itself. Using a similar
argument used in 8.9.1 conic duality

max
W≥0

−Tr(WX) =

{
0 if X � 0

∞ otherwise

which yields an infeasible primal objective value if the constraint X � 0 is not met. The Lagrangian
function is then defined as

L(X, ν,W ) = Tr(M0X) +

m∑

i=1

νi(Tr(MiX)− ai) + Tr((−X)W )

= Tr((M0 +

m∑

i=1

νiMi −W )X)−
m∑

i=1

νiai

The dual function is

g(ν,W ) = min
X
L(X, ν,W )

=

{
−∑m

i=1 νiai if M0 +
∑m

i=1 νiMi −W = 0

−∞ Otherwise

Thus, the dual problem is

max
ν

− ν>a

s.t. M0 +
m∑

i=1

νiMi � 0

To arrive at the above constraint, notice that this is equivalent to M0+
∑m

i=1 νiMi = W with W � 0.
To see why, if M0 +

∑m
i=1 νiMi � 0, then there must exist W � 0 such that M0 +

∑m
i=1 νiMi = W .

Thus, it is sufficient to solve the above dual problem, then set W = M0 +
∑m

i=1 νiMi to complete
solving for all dual variables. The above problem is itself a SDP problem.

A SDP can be expressed as a linear conic program by vectorizing the matrix. Recall that a
vectorization of a matrix A ∈ Rm×n produces a vector in Rmn given by:

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . am,n]

With that, a standard SDP problem can be written as the following linear conic program
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min
X∈Sn

vec(M0)>vec(X)

s.t. vec(Mi)
>vec(X) = ai, i = 1, . . . ,m

X ∈ Kpsd

We can again show that the dual problem of a SDP is another SDP by starting with another SDP
formulation

min
x∈Rn

a>x

s.t. F0 + x1F1 + x2F2 + · · ·+ xnFn � 0

Let Z � 0 be the dual variable associated with the constraint, since PSD matrices are self-dual.
Thus, the Lagrangian function is

L(x, Z) = a>x+ Tr((F0 + F1x1 + · · ·+ Fnxn)Z)

The dual function is

g(Z) = min
x
L(x, Z)

= min
x

(
n∑

i=1

((ai + Tr(FiZ))xi) + Tr(F0Z)

)

=

{
Tr(F0Z) if ai + Tr(FiZ) = 0 ∀i
−∞ otherwise

The dual problem is therefore

max
Z

Tr(F0Z)

s.t. ai + Tr(FiZ) = 0 ∀i
Z � 0

which is a SDP in canonical form.

8.9.3 SOCP Duality

Recall the SOCP without equality constraints in standard form

min
x∈Rn

cTx

||Aix+ bi||2 ≤ cTi x+ di i = 1, . . . ,m

where the problem parameters are c ∈ Rn, Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R. We can use
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results of linear conic duality to solve for the dual of SOCP. Recall that a second order cone K is
defined as

K = {(u, v) | u ∈ Rn, v ∈ R, ||u||2 ≤ v}

Then the SOCP can be expressed as the following linear conic program

min
x∈Rn

cTx

−
[
Aix+ bi
c>i x+ di

]
�K 0 i = 1, . . .m

To find the dual variable

[
ui
vi

]
for i = 1, . . . ,m. Recall that since the second order cone is self dual,

that this implies ||ui||2 ≤ vi for all i. In other words, that the dual variable must be the dual cone
of a second order cone in order to define a proper Lagrangian function. The dual cone of a second
order cone is the set of second order cones, as proved previously.

L(x, u, ν) = c>x−
m∑

i=1

[
u>i vi

] [Aix+ bi
c>i x+ di

]

=

(
c> −

m∑

i=1

u>i Ai − vic>i

)
x−

m∑

i=1

u>i bi − vidi

The dual function is

g(u, v) = min
x
L(x, u, v)

=

{
−∑m

i=1 u
>
i bi −

∑m
i=1 vidi if c> −∑m

i=1 u
>
i Ai −

∑m
i=1 vic

>
i = 0

−∞ otherwise

The dual problem is therefore

max
u,v

(
−

m∑

i=1

u>i bi −
m∑

i=1

vidi

)

s.t. c> +

m∑

i=1

u>i Ai −
m∑

i=1

vic
>
i = 0

||ui||2 ≤ vi i = 1, . . .m

which is another SOCP problem.
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8.10 KKT Condition Examples

8.10.1 Linear Conic Program

Recall a linear conic program in general form

min
x∈Rn

f0(x)

s.t. fi(x) �Ki 0 i = 1, . . .m

hi(x) = 0 i = 1, . . . , p

Where fi’s and hi’s are linear and f1, . . . , fm are vectors. The KKT conditions for some primal-dual
triplet (x, λ, ν) are

1. Primal feasibility: fi(x
∗) �Ki 0 for i = 1, . . . ,m; hi(x

∗) = 0 for i = 1, . . . , p

2. Dual feasibility: λ∗i �Ki 0 i = 1, . . . ,m

3. Complementary Slackness: λ∗>i fi(x
∗) = 0 for i = 1, . . . ,m

4. Stationarity Condition: ∇xL(x∗, λ∗, ν∗) = 0

8.10.2 SDP

Recall SDP in standard form

min
X∈Rn×n

tr(M0X)

s.t. Tr(MiX) = ai i = 1, . . . ,m

X � 0

where M0,M1, . . . ,Mm ∈ Sn. The corresponding KKT conditions for the primal-dual triplet
(X∗,W ∗, ν∗) are21

1. Primal feasibility: Tr(MiX
∗) = ai for i = 1, . . . ,m and X∗ � 0

2. Dual feasibility: W ∗ � 0

3. Complementary Slackness: Tr(−X∗W ∗) = 0

4. Stationarity Condition: ∇xL(x∗, λ∗, ν∗) = 0⇒M0 +
∑m

i=1 ν
∗
iMi −W ∗ = 0

21Here ν is the dual variable associated with the constraint Tr(MiX) = ai and W is the dual variable associated
with the constraint X � 0.
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8.11 Strong Duality in Linear Conic Programs

If ∃x ∈ relative interior of the domain of an optimization problem such that conic inequalities are
satisfied strictly (i.e. fi(x) ≺Ki 0), then Slater’s condition is satisfied.

Theorem 8.11.1. If Slater’s condition is satisfied, then strong duality holds for a linear conic
program and the dual optimization problem has a solution. In other words, when Slater’s
condition is satisfied for linear conic programs, then the KKT conditions also establish global
optimality for the primal and dual variables.

Example 1
The Slater’s condition for a SDP is that there exists X̄ such that Tr(MiX̄) = ai for i = 1, . . . ,m
and X̄ � 0.

8.12 Fenchel Duality

A conic optimization problem can, in general, be stated as

min
x

f(x)

x ∈ X1 ∩ X2

where f is a convex function, X1 is a convex set, and X2 is a proper cone. To get the intuition for
this, consider the linear conic program below

min
x∈Rn

a>0 x

s.t. Ax = b

Aix− bi �Ki 0, i = 1, . . . ,m

The conic constraint can equivalently be expressed as Ãx− b̃ �K 0, where

Ã =



A1
...
Am


 , b̃ =



b1
...
bm


 , K = K1 × · · · × Km

Thus, for conic optimization, f(x) = a>0 x and X1 is a linear set and X2 is a proper cone.
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Theorem 8.11.1 (Fenchel Duality). Under the assumptions of convex function f1, con-
cave function f2, and existence of point in the relative interior of X1 ∩X2, where X1 and X2

are domains of f1 and f2 respectively, strong duality holds such that

inf
x∈X1∩X2

f1(x)− f2(x) = sup
ν∈Λ1∩Λ2

g2(ν)− g1(ν)

where g1(ν) = supx∈X1
x>ν − f1(x) and g2(ν) = infx∈X2 x

>ν − f2(x). The domains Λ1 and
Λ2 are defined as

Λ1 = {ν | g1(ν) <∞}, Λ2 = {ν | g2(ν) > −∞}
In other words, the dual problem has a solution whose optimum is equal to the primal
optimum.

Partial Proof
Start from the optimization problem

inf
x

f1(x)− f2(x)

x ∈ X1 ∩ X2

Convert this to a different but equivalent problem

inf
y,z

f1(y)− f2(z)

y = z

y ∈ X1

z ∈ X2

Introduce a dual variable to the constraint y − z to arrive at the dual function

g(ν) = inf
y∈X1
z∈X2

f1(y)− f2(z) + ν>(z − y)

inf
z∈X2

(ν>z − f2(z))− sup
y∈X1

(ν>y − f1(y))

= g2(ν)− g1(ν)

Then the dual problem becomes

sup
ν∈Λ1∩Λ2

g(ν) = sup
ν∈Λ1∩Λ2

g2(ν)− g1(ν)

To apply Fenchel duality to a conic optimization problem, set f1(x) = f(x) and f2(x) = 0. Then
g1(ν) = supx∈X (x>ν − f1(x)) and g2(ν) = infx∈X (x>ν). The second quantity can equivalently be
expressed as

−g2(ν) = sup
x∈X2

(−x>ν) =

{
0 if ν ∈ X ∗2
∞ otherwise

where X ∗2 denotes the dual cone of X2 defined by X ∗2 = {ν : x>ν ≥ 0, ∀x ∈ X2}22. Thus, the dual
problem becomes

22If ν /∈ X ∗2 then ∃x̄ such that x̄>ν < 0. Then (−αx̄)>ν > 0 if α > 0. By making α→∞ we have (−αx̄)>ν →∞.
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inf
ν

g1(ν)

ν ∈ Λ1 ∩ X ∗2

where −g2(ν) = 0 because ν ∈ X ∗2 . Thus, the dual variable belongs to the dual cone.

9 Robust Optimization

Consider a standard linear programming problem

min
x∈Rn

c>x s.t. Ax ≤ b

We typically assume that the data, given by c, A and b, are known. However, in practice, they
are usually unknown. The main issue with this, is that LP problems are highly sensitive to the
parameters. In effect, if we solve our nominal problem

min
x∈Rn

ĉ>x s.t. Âx ≤ b̂

Our nominal solution x̂∗ may be infeasible if for example the row data ai = âi + ε|âi|, for ε ∼
U [−0.001, 0.001]23. This is depicted in Figure 24, on which the nominal solution x̂∗ is not feasible
in the new domain.

0

new solution

nominal
solution

Figure 24: New domain formed by the unknown parameters. It can
be observed that the nominal solution x̂∗ is not even feasible in the
new domain.

23This means that ε distributes uniform between [−0.001, 0.001].
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The alternative to deal with this issue is to consider the worst-case scenario.

9.1 Robust LP

Consider the nominal LP

min
x∈Rn

c>x s.t. a>i x ≤ bi, i = 1, . . . ,m

on which (ai, bi) ∈ Ui = {âi + u : ||u||2 ≤ ρi; bi + v : ||v||2 ≤ µi}. The set defined by Ui is called
uncertainty set.

We define the Robust Counterpart as

min
x

c>x

s.t. a>i x ≤ bi, ∀(ai, bi) ∈ Ui, i = 1, . . . ,m

In other words, the robust counterpart requires the solution x∗ to satisfy the tightest constraints
possible under uncertainty. In the case of c ∈ U0 being unknown, we use an epigraphic reformulation
to put it in the constraints

min
x,t

t

s.t. a>i x ≤ bi, ∀(ai, bi) ∈ Ui, i = 1, . . . ,m

c>x ≤ t, ∀c ∈ U0

Reverting the epigraphic reformulation this can be written as

min
x

max
c∈U0

c>x

s.t. a>i x ≤ bi, ∀(ai, bi) ∈ Ui, i = 1, . . . ,m

The above inequality constraint involving uncertainty in both ai and bi can be expressed more
succinctly by first defining

z =

[
ai
bi

]
∈ Zi x̃ =

[
x
−1

]

Then the “tightest” constraint can be re-expressed as

(max
zi∈Zi

z>i x̃) ≤ 0

Example 1: SVM
Consider the SVM problem with data (xi, yi), i = 1, . . . ,m, on which xi ∈ Rn and yi ∈ {+1,−1}.
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We want to construct a classifier of the form ŷ(x) = sign(ω>x). As an initial alternative we could
try a least square problem of the form

min
w

m∑

i=1

||yi − sign(ω>xi)||22

However, this problem is not convex due to the sign function. Below is another loss function where
correctly-classified samples yield zero loss while incorrectly classified samples yield loss that grows
as the miss-classified sample is further away from the hyperplane.

m∑

i=1

(
−yi(ω>xi + b)

)
+

However, a total loss of zero can be obtained when ω∗, b∗ = 0. This problem can be addressed by
introducing the following loss function

min
ω∈Rn

m∑

i=1

(1− yiω>xi)+

on which the function (·)+ is defined as (u)+ = max{0, u}. This function is convex and is instead
an upperbound on the original cost function. The term (1 − yi · ω>xi)+, is in [0, 1) if signs of yi
and ω>x coincide, and in (1,∞) if the signs do not.

Now, we may not know exactly the data, like a hyper-rectangle of the form xi : ||xi − x̂i||∞ ≤ ρi,
we can write our Robust counterpart as:

min
ω

max
||xi−x̂i||∞≤ρi
i=1,...,m

m∑

i=1

(1− yiω>xi)+

This can be thought as a classic SVM problem, but on which each data point is depicted as a
rectangle instead of a single point.

Observe that in a Robust LP, the term a>i x ≤ b,∀ai ∈ Ui can be properly replaced by

max
ai∈Ui

a>i x = ϕ(x) ≤ bi

where ϕ(x) is a convex function if Ui is convex, since ϕ(x) is the pointwise maximum of affine
functions on x over a convex domain. However, a nice property of Robust LP, is that even if Ui is
not convex, the following property holds

max
ai∈Ui

a>i x = max
ai∈conv(Ui)

a>i x ← convex

That is we don’t require Ui to be convex, since it can be properly replaced by its convex hull,
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maintaining intact the robust counterpart24.

Example 2:
Consider the Robust LP

min
x∈Rn

c>x

s.t. a>i x ≤ bi
ai ∈ Ui
i = 1, . . .m

with a box uncertainty Ui

Ui = {ai : ||ai − âi||∞ ≤ ρi}
= {âi + ρiu : ||u||∞ ≤ 1}

Then

ϕi(x) = max
ai∈Ui

a>i x

= â>i x+ ρi max
||u||∞≤1

u>x

= â>i x+ ρi||x||1

With that, the robust counterpart can be written as

min
x∈Rn

c>x s.t. â>i x+ ρi||x||1 ≤ bi, i = 1, . . . ,m

That can be properly written as an LP

min
x∈Rn

c>x

s.t. â>i x+ ρi

n∑

j=1

sj ≤ bi, i = 1, . . . ,m

− si ≤ xi ≤ si, i = 1, . . . , n

Example 3: Scenario Uncertainty
Consider the Robust LP with an scenario uncertainty set

Ui = {a(1)
i , . . . , a

(ki)
i }

24The idea comes that if a point is robust feasible in Ui it will be feasible on conv(Ui). This is depicted on example
1.2.6 (page 12) on https://www2.isye.gatech.edu/~nemirovs/FullBookDec11.pdf.
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Note that ϕ(x) = max
ai∈Ui

a>i x = max
1≤j≤ki

a
(j)>
i x. Its robust counterpart can be written as

min
x∈Rn

c>x

s.t. max
1≤j≤ki

a
(j)>
i x ≤ bi, i = 1, . . . ,m

⇐⇒
min
x∈Rn

c>x

s.t. a
(j)>
i x ≤ bi, ∀j = 1, . . . , ki

∀i = 1, . . . ,m

Example 4:
Recall the robust counterpart of the SVM problem

min
ω

max
||xi−x̂i||∞≤ρi
i=1,...,m

m∑

i=1

(1− yiω>xi)+

Note that the uncertainty for the dataset is not coupled between datapoints. The uncertainty set
can be written as

Ui = {xi : ||xi − x̂i||∞ ≤ ρi}
= {x̂i + ρiu : ||u||∞ ≤ 1}

For each i we have

ϕi(x) = max
xi∈Ui

m∑

i=1

(1− yiω>xi)+

=
m∑

i=1

(
1 + yi max

xi∈Ui
(−ω>xi)

)

+

=
m∑

i=1

(
1− yiω>x̂i + ρi||ω||1

)
+

Note that in the second line, the order of two maximizations are exchanged, which is a valid
operation. In the third line, x∗i = −sgn(ω), where sgn is an element-wise operation. Thus, the
robust counterpart can be written as

min
ω

m∑

i=1

(
1− yiω>x̂i + ρi||ω||1

)
+

This is not an easy problem to solve. As an alternative, since (u+ v)+ ≤ (u)+ + (v)+
25, a simpler

problem can be solved as an upper bound of the previous one. Consider u = 1 − yiω
>xi and

v = ρi||ω||1 ≥ 0. The following relaxation provides an upper bound of the robust counterpart of
the SVM problem

25To see this bound, note that if both u and v are positive, the inequality is binding. If at least one of u or v is
negative, then clearly the right hand side is greater than the left hand side.
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min
ω

m∑

i=1

(
1− yiω>x̂i

)
+

+

(
m∑

i=1

ρi

)
||ω||1

that is widely implemented in packages like scikit.

The general steps of formulating a robust optimization can be summarized as

1. Specify the nominal problem, which in general form is

min
x∈Rn

f0(x)

fi(x) ≤ 0, i = 1, . . . ,m

Note that no equality constraints are allowed and the problem is assumed to be convex so
that the robust counterpart can “inherit” the convexity of the problem.

2. For problem parameters or coefficients that are uncertain, define an uncertainty set. For
example, for the constraint a>i x ≤ bi, the uncertainty of ai can be modeled as a “box”
ui = ai − âi, where ||ui||∞ ≤ ε.

3. Arrive at the robust counterpart problem so that when solved, the solution x∗ satisfies even
the tightest of constraints possible from uncertainly. For a robust LP with uncertainty set
example in step 2), the robust counterpart would be

min
x∈Rn

c>x

(âi + ui)
>x ≤ bi, i = 1, . . . ,m

ui : ||ui||∞ ≤ ε, i = 1, . . . ,m

that can be expressed as

min
x∈Rn

c>x

â>i x+ ε||x||1 ≤ bi, i = 1, . . . ,m

Generally, all constraints fi(·, u) are assumed convex for each u ∈ U . In robust LP, fi(·, u)
are linear for each fixed u.

When the uncertainty set is defined using a norm, the robust counterpart is easily defined. Gen-
erally, for an uncertainty set involving some norm of the form A = {a : ||a − â|| ≤ ε}, the robust
counterpart of the constraint a>x ≤ 0 turns into maxa∈A a>x = â>x + ε||x||∗ ≤ 0. Recall that
||x||∗ denotes the dual norm. Thus, if the uncertainty set is defined in terms of the l2 norm, then
the constraint turns into that of a SOCP.

9.2 Intersection of Uncertainty Sets

Recall the box uncertainty set Ai = {ai : ||ai − âi||∞ ≤ ρi}. In scenarios when it is unlikely for
all components of ai to reach their upperbound, the uncertainty is considered too large. Thus, it
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may be reasonable to restrict the uncertainty set to the intersection of two uncertainty sets. For
example

U = {a : ||a− â||(1) ≤ α; ||a− â||(2) ≤ ε}

Example 1
Revisit the SVM problem. Let xi ∈ Rn represent data points such that a priori, we know at most
k << m number of them have incorrect labels, where ŷi ∈ {−1,+1}. This can occur for instance,
when working with a dataset of brain images diagnosed by physicians. The upper bound on the
number of incorrect labels can be expressed as

m∑

i=1

|yi − ŷi|= ||yi − ŷi||1 ≤ 2k

Thus, there is uncertainty in the labels. In robust optimization, we wish to find ω∗, b∗ such that
the largest loss possible resulting from uncertainty in y’s is minimized.

min
ω,b

max
yi∈{−1,1}
||yi−ŷi||1≤2k

m∑

i=1

(1− yi(ω>xi + b))+

Recall that non convex sets, such as yi ∈ {−1, 1}, can be replaced by its convex hull yi ∈ [−1, 1],
maintaining intact the robust counterpart. Thus, the robust counterpart can be written as

min
ω,b

max
||yi||∞≤1
||yi−ŷi||1≤2k

m∑

i=1

(1− yi(ω>xi + b))+

that is a Robust Optimization problem with the intersection of two uncertainty sets.

In general, an optimization under intersection of two uncertainty sets is expressed as

p∗ = max
a∈A1∩A2

a>x

We define the support function of a>x, a ∈ A as

ϕ(x) = max
a∈A

a>x

We assume that the support functions given by

ϕ1(x) = max
a∈A1

a>x ∧ ϕ2(x) = max
a∈A2

a>x

are easy to compute (for example if both uncertainty sets are defined by norms, like in the previous
example).

By adding two slack variables we can re-express our optimization problem as
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max
a,a1,a2

a>x

a = a1 ∈ A1

a = a2 ∈ A2

Using the Lagrangian, the original problem can be written as

p∗ = max
a,a1∈A1,a2∈A2

min
ν1,ν2

a>x+ ν>1 (a1 − a) + ν>2 (a2 − a)

The minimization and maximization operations can be exchanged if Slater conditions on the original
problem are satisfied. For that we require that both A1 and A2 are convex sets with a non-empty
intersection and that A1 ∩A2 has a non-empty relative interior. Then, since the objective is affine,
and Slater is satisfied, we can flip min and max to obtain:

p∗ = min
ν1,ν2

max
a,a1∈A1,a2∈A2

a>x+ ν>1 (a1 − a) + ν>2 (a2 − a)

= min
ν1,ν2

max
a,a1∈A1,a2∈A2

a>(x− ν1 − ν2) + a>1 ν1 + a>2 ν2

= min
ν1,ν2


max

a
a>(x− ν1 − ν2) + max

a1∈A1

a>1 ν1

︸ ︷︷ ︸
ϕ1(ν1)

+ max
a2∈A2

a>2 ν2

︸ ︷︷ ︸
ϕ2(ν2)




= min
ν1,ν2

{
ϕ1(ν1) + ϕ2(ν2) if x− ν1 − ν2 = 0

+∞ otherwise

= min
ν1,ν2

x=ν1+ν2

ϕ(ν1) + ϕ(ν2)

= min
ν2

ϕ1(x− ν2) + ϕ2(ν2)

We are interested then in the following constraint:

max
a∈A1∩A2

a>x = min
ν
ϕ1(x− ν) + ϕ2(ν) ≤ b

Note that if in the last constraint we find a feasible ν̄ such that ϕ1(x − ν̄) + ϕ2(ν̄) ≤ b, then for
sure its minimum ν∗ will satisfy the constraint. This implies that if we have a problem defined by:

min
x

c>x

s.t. a>(x) ≤ b, ∀a ∈ A = A1 ∩ A2

x ∈ X

can be recast as min
x

c>x

s.t. min
ν
ϕ1(x− ν) + ϕ2(ν) ≤ b

x ∈ X
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that can be written as

min
x,ν

c>x

s.t. ϕ1(x− ν) + ϕ2(ν) ≤ b
x ∈ X

Example 2
Consider the following uncertainty sets:

A1,i = {a : ||a− âi||∞ ≤ εi}
A2,i = {a : ||a− âi||1 ≤ κi}

As we know, their support functions are

ϕ1,i(x) = â>i x+ εi||x||1
ϕ2,i(x) = â>i x+ κi||x||∞

Then the problem given by

min
x

c>x

s.t. a>i (x) ≤ bi, i = 1, . . . ,m, ∀ai ∈ Ai = A1,i ∩ A2,i

Then, its robust counterpart can be written as

min
x,ν

c>x

s.t. â>i (x− νi) + εi||x− νi||1︸ ︷︷ ︸
ϕ1,i(x−νi)

+ â>i νi + κi||νi||∞︸ ︷︷ ︸
ϕ2,i(ν)

≤ bi, i = 1, . . . ,m

Other examples of uncertainty models:

• Polytopes in terms of vertices a(i), i = 1, . . . ,m. We define the polytope as A = conv{a(i)}mi=1.
Then

ϕA(x) = max
a∈A

a>x = max
1≤i≤m

a(i)>x

• Polytopes in terms of A = {a : Fa ≥ g}
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ϕA(x) = max
a∈A

a>x

= max
a

min
λ≥0

a>x+ λ>(Fa− g)

= min
λ≥0

max
a

a>(x+ F>λ)− λ>g

= min
λ≥0

{
−λ>g if F>λ+ x = 0
+∞ otherwise

= min
λ≥0

F>λ+x=0

−λ>g

• Conic forms such as A = {a : a = â + Pζ, ζ ∈ K}, where K is a proper cone. We assume
that the relative interior of the uncertainty set is not empty. Thus:

ϕA(x) = max
a∈A

a>x

= max
ζ∈K

â>x+ (Pζ)>x

= â>x+ max
ζ∈K

ζ>P>x

Using conic duality with dual variable λ:

ϕA(x) = â>x+ max
ζ

min
λ∈K∗

ζ>P>x+ ζ>λ

= â>x+ min
λ∈K∗

max
ζ
ζ>(P>x+ λ)

=

{
â>x if P>x+ λ = 0, λ ∈ K∗
∞ otherwise

= min
λ∈K∗

P>x+λ=0

â>x

9.3 Chance Programming

Chance programming is an optimization problem involving constraints of the form

a>x ≤ b

where a ∈ Rn follows some distribution D(â,Σ). Thus, the problem involves solving for x such that

Prob(a>x ≤ b) ≥ η = 1− ε

where ε is sometimes referred to as the reliability level. In other words, the problem involves finding
x such that the probability that a>x ≤ b is high. This probability is usually difficult to calculate
except for a few select distributions, such as the multivariate Gaussian. If a ∼ N (â,Σ), then
a>x = N (â>x, x>Σx)26. Then it follows from definition of cumulative distribution function of the

26This comes from definition of the multivariate normal. By definition, a random vector Y ∈ Rn is multivariate
normal if every function a>Y of Y has the univariate normal distribution. The mean and variance of a>Y are given
by E[a>Y ] = a>µ and Var(a>Y ) = a>Cov(Y )a = a>Σa.
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standard normal distribution Φ(x) that

Prob(a>x ≤ b) = Φ

(
b− â>x√
x>Σx

)

Given that a>x ≤ b has to be satisfied with probability η or greater

η ≤ Φ

(
b− â>x√
x>Σx

)
⇔ Φ−1(η)||Σ1/2x||2 ≤ b− â>x

⇔ â>x+ Φ−1(η)||Σ1/2x||2 ≤ b

Stating the distribution a follows N (â, σ) equivalently means that a lives in the ellipsoid U = {a :
(a− â)>Σ−1(a− â) ≤ Φ−1(η)2}, and this yields the same robust counterpart.

U = {a : (a− â)>Σ−1(a− â) ≤ Φ−1(η)2}
= {a : ||Σ−1/2(a− â)||22 ≤ Φ−1(η)2}
= {(a, u) : u = Σ−1/2(a− â), ||u||22 ≤ Φ−1(η)2}
= {(a, u) : a = â+ Σ1/2u, ||u||2 ≤ Φ−1(η)}
= {â+ Φ−1(η)Σ1/2u : ||u||2 ≤ 1}

that yields

ϕU (x) = max
a∈U

a>x

= â>x+ max
||u||2≤1

(Φ−1(η)Σ1/2u)>x

= â>x+ Φ−1(η) max
||u||2≤1

u>(Σ1/2x)

= â>x+ Φ−1(η)||Σ1/2x||2

In general, if a ∼ D(µ,Σ), a particular distribution, we want to determine the following set

P = {a : Prob(a>x ≤ b) ≥ 1− ε}

This is a hard problem to solve, and some techniques to address this issue are:

1) Large deviation theory: attempts to find lower bounds on Prob(a>x ≤ b), such that they can
be used to add constraints in the optimization problem.

2) Distributional robustness: in this setting, the exact distribution is unknown, but the family of
distribution P is known, then ensuring that the probability of a>x ≤ b being greater than η = 1− ε
even if a comes from the most disadvantageous distribution from P can be formulated as

inf
p∈P

Probp(a
>x ≤ b) ≥ η = 1− ε ⇔ sup

p∈P
Probp(a

>x ≥ b) ≤ ε = 1− η
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Let f(x, a) = a>x− b, an equivalent of the chance constraint is given by

p(x) = sup
p∈P

Probp(a
>x− b ≥ 0) = sup

p∈P
Probp(f(x, a) ≥ 0) ≤ ε = 1− η

A convex bound can be found in the following form. Since Probp(f(x, a) ≥ 0) = E[1(f(x, a) ≥ 0)],
we can find an upper bound for Probp(f(x, a) ≥ 0) with a specific convex function ψ(s) such that

E[1(f(x, a) ≥ 0)] ≤ E[ψ(f(x, a) ≥ 0)]

An example of this is ψ(s) = exp(s) because exp(s) ≥ 1(s) for s ≥ 0.

To generalize the previous bound, let ψ : R → R a nonnegative valued, nondecreasing, convex
function satisfying the following property: ψ(z) > ψ(0) ≥ 1 for any z > 0. ψ(z) is referred as
generating function27. Denote 1A the indicator function of a set A, i.e., 1A(z) = 1 if z ∈ A, and
0 otherwise. From the property of ψ(z), a newly introduced free variable t > 0, and any random
variable Z (with density gZ(z)), we have the following bound

E[ψ(t−1Z)] =

∫ ∞

−∞
ψ(t−1z)gZ(t−1z)dz

ψ(t−1z) ≥ 0 → ≥
∫ ∞

0
ψ(t−1z)gZ(t−1z)dz

ψ(t−1z) > 1 for z ≥ 0 → ≥
∫ ∞

0
1 · gZ(t−1z)dz

= E[1[0,∞](t
−1Z)]

= Probp{t−1Z ≥ 0}
= Probp{Z ≥ 0}

By taking Z = f(x, a), from the previous inequality we obtain:

π(x) = Probp{f(x, a) ≥ 0} ≤ E[ψ(t−1f(x, a))]

Then, E[ψ(t−1f(x, a))] ≤ ε implies π(x) ≤ ε, since E[ψ(t−1f(x, a))] ≥ π(x). Multiplying the
inequality by t the we obtain

tE[ψ(t−1f(x, a))] ≤ tε

Define Ψ(x, t) = tE[ψ(t−1f(x, a)], that is a weighted linear combination of perspective functions
tψ(t−1f(x, a)). Then, the previous inequality can be written Ψ(x, t) ≤ tε⇔ Ψ(x, t)− tε ≤ 0. Since
t is a free parameter, we can minimize over t: mint≥0 Ψ(x, t) − tε = mint>0 tE[ψ(t−1f(x, a)] − tε,
to yield a closer bound for Probp(f(x, a) ≥ 0} = π(x) ≤ ε. Thus, imposing the constraint:

min
t>0

Ψ(x, t)− tε ≤ 0

can be used as a less tighter constraint of the original chance constraint Probp(f(x, a) ≥ 0} ≤ ε.
27More details on https://pdfs.semanticscholar.org/73fc/c81a0698b391decc0799ea9cb2ff34632e9a.pdf

82

https://pdfs.semanticscholar.org/73fc/c81a0698b391decc0799ea9cb2ff34632e9a.pdf


Example 1:
From the above discussion, choose ψ(z) = [(z + 1)+]2, that is nonnegative valued, nondecreasing,
and convex that satisfies ψ(0) = 1 and ψ(z) > ψ(0) for all z > 0. Then, for any t > 0:

Ψ(x, t) = tE[(t−1f(x, a) + 1)2
+] ≤ tε

will yield the desired change constraint. Dropping the + subscript (and hence obtaining an upper
bound), yields a bound that only depends on the two first moments. That is:

tE[(t−1f(x, a) + 1)2] ≤ tε = t(1− η)

with a little algebra of expanding the square

2E[f(x, a)] + t−1E[f(x, a)2] + tη ≤ 0

Minimizing over t to obtain the tightest constraint yields t∗ = η−1/2E[f(x, a)2]1/2. Replacing t∗,
we can recast our chance constraint as:

E[f(x, a)] + (ηE[f(x, a)2])1/2 ≤ 0

Recall that in the linear case, E[f(x, a)] = â>x − b and Var[f(x, a)] = x>Σx = ||Σ1/2x||22, and so
E[f(x, a)2] = Var[f(x, a)] + (E[f(x, a)])2 = ||Σ1/2x||22 + (â>x− b)2, obtaining:

â>x− b+ η1/2(x>(Σ + ââ>)x− 2bâ>x+ b2)1/2 = â>x− b+ η1/2(x>Σ̃x− 2bâ>x+ b2)1/2 ≤ 0

where Σ̃ = Σ + ââ>. This can be properly cast as a SOCP constraint:

â>x− b+ η1/2

∣∣∣∣
∣∣∣∣
[
z
y

]∣∣∣∣
∣∣∣∣
2

≤ 0

with z = Σ̃1/2x− bΣ̃−1/2â and y = b(1− â>Σ̃−1â)1/2 since:28

∣∣∣∣
∣∣∣∣
[
z
y

]∣∣∣∣
∣∣∣∣
2

=
(
||z||22 + y2

)1/2

=
[
(Σ̃1/2x− bΣ̃−1/2â)>(Σ̃1/2x− bΣ̃−1/2â) + b2(1− â>Σ̃−1â)

]1/2

=
[
x>Σ̃x− 2bâ>x+ b2â>Σ̃−1â+ b2 − b2â>Σ̃−1â

]1/2

= (x>Σ̃x− 2bâ>x+ b2)1/2

Example 2:
Consider the generating function ψ(z) = exp z. We seek to compute

28More details on https://web.stanford.edu/class/ee364a/lectures/chance_constr.pdf
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sup
p∈P

Probp(a
>x− b > 0)

We assume that a is zero mean, the support of a is in [−1, 1]n (i.e. the values of each ai is bounded
between [−1, 1]), and each ai’s are independent of each other.

Consider the case of t = 1, and we got

Ψ(x, 1) = E[exp(a>x− b)]
= e−bE[exp(a>x)]

= e−bE

[
exp

(
n∑

i=1

aixi

)]

= e−bE

[
n∏

i=1

exp(aixi)

]

=︸︷︷︸
indep.

e−b
n∏

i=1

E[exp(aixi)]

Before continuing we will show the Hoeffding Lemma. Let Z a zero mean random variable bounded
in [−1, 1]. Note that the exponential is a convex function, that is below the line formed between −1

and 1. With that, for any z ∈ [−1, 1], the line is defined as L :=
{
eλ−e−λ

2 (z − 1) + eλ, z ∈ [−1, 1]
}

.

With that

eλz ≤ eλ − e−λ
2

(z − 1) + eλ =
eλ − e−λ

2
z +

eλ + e−λ

2

Taking expectation on both sides for the random variable Z, and using that Z is zero mean29:

E[eλZ ] ≤ eλ − e−λ
2

E[Z] +
eλ + e−λ

2

=
eλ + e−λ

2
= cosh(λ)

→︸︷︷︸
Taylor S.

=

∞∑

k=0

λ2k

(2k)!

=
∞∑

k=0

(λ2)k

2k
· 2k

(2k)!

≤
∞∑

k=0

(
λ2

2

)k
· 1

k!
= exp

(
λ2

2

)

Thus, let λ = xi:

29The proof that 2k

(2k)!
≤ 1

k!
can be found on https://math.stackexchange.com/questions/2238069/

how-is-the-factorial-of-2k-2k-k-1-3-5-2k-1/2238074.
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Ψ(x, 1) = e−b
n∏

i=1

E[exp(xiai)]]

≤ e−b
n∏

i=1

exp

(
x2
i

2

)

= exp

(
n∑

i=1

x2
i

2
− b
)
≤ 1 · ε

Taking log we obtain:

1

2

n∑

i=1

x2
i − b ≤ log ε

that is a convex quadratic constraint on x.

For the case of t free (instead of t = 1), and minimizing over t: mint>0 Ψ(x, t) − tε, to obtain the
closest bound of p(x), the constraint can be written as

√
2 log(1/ε)||x||2 ≤ b

To show this, recall that E[ψ(t−1f(x, a))] ≤ ε implies:

E[exp(t−1f(x, a))] ≤ ε
→ logE[exp(t−1f(x, a))] ≤ log ε

→ t logE[exp(t−1f(x, a))] ≤ t log ε

Thus, using the Hoeffding Lemma (HL)

t logE[exp(t−1f(x, a))] = t logE[exp(t−1(a>x− b))]
= t log

{
e−bt

−1
E[exp(a>(t−1x))]

}

= t log

{
e−bt

−1
n∏

i=1

E[exp(t−1xiai)]

}

using HL with λ = t−1xi → ≤ t log

{
e−bt

−1
n∏

i=1

exp

(
x2
i

2t2

)}

= t log

{
exp

(
n∑

i=1

x2
i

2t2
− bt−1

)}

=
n∑

i=1

x2
i

2t
− b

Then we want to solve:
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min
t>0

n∑

i=1

x2
i

2t
− b− t log ε

Taking the derivative and setting it to zero

0 = −t−2
n∑

i=1

x2
i

2
− log ε

= −t−2

(
n∑

i=1

x2
i

2

)
+ log(1/ε)

→ t∗ =

(
1

2 log(1/ε)

n∑

i=1

x2
i

)1/2

=
1√

2 log(1/ε)
||x||2

Replacing t∗ we obtain:

1

2t∗

n∑

i=1

x2
i − b+ t∗ log(1/ε) =

1

2

√
2 log(1/ε)||x||2 − b+

1√
2 log(1/ε)

||x||2 log ε

=
√

2 log(1/ε)||x||2 − b
≤ 0

that is an SOCP constraint.

9.4 Moment Problems

We now consider optimization problems with constraints of the form a>x ≤ b, where a follows some
distribution with known moments. The Markov inequality is a useful inequality when considering
these types of problems.

P (X ≥ a) ≤ E[X]

a
, X ≥ 0 (23)

The proof for Markov inequality is

E[X] =

∫
x(s)p(s)ds ≥

∫

s∈A
x(s)p(s)ds ≥ aProb(A)

where A = {x : x ≥ a}. Now consider the primal moment problem where the first moment is
given as q1, . . . qm.
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inf
π(·)

∫
f0(s)π(s)ds

s.t.

∫
π(s)ds = 1

∫
fi(s)π(s)dx = qi i = 1, . . .m

π(s) ≥ 0 ∀s

with f0, f1, . . . , fm : Rn → R. This problem is infinite-dimensional in its decision variable π(s)
with finite constraints. Converting between a primal and dual problem exchanges the number of
variables and constraints. The Lagrangian function of this problem is

L(π, ν) =

∫
f0(s)π(s)dx+

m+1∑

i=1

νi

[
qi +

∫
fi(s)π(s)ds

]

where ν ∈ Rm+1 because
∫
π(s)ds = 1 is another instance of

∫
fm+1(s)π(s)dx = qm+1 with qm+1 =

1 and fm+1(s) = 1. The dual function then becomes

g(ν) = min
π(·)≥0

ν>q +

∫
π(s)

[
f0(s)−

m+1∑

i=1

νifi(s)

]
ds

which in terms leads to the dual problem

d∗ = max
ν

g(ν) = max
ν

ν>q : f0(s) ≥
m+1∑

i=1

νifi(s)

which is a convex, semi-infinite LP problem, with infinite number of constraints and finite number
of variables. Usually p∗ ≥ d∗, but strong duality is achieved when the solution π(·) is in the interior
of the feasible set (π(·) > 0). A distribution that satisfies this is the Gaussian distribution.

Example 1:
Assume that fi’s are quadratic of the form:

fi(s) =

[
s
1

]>
Fi

[
s
1

]
, i = 0, . . . ,m+ 1

with Fi = F>i ∈ R(n+1)×(n+1) for every i and Fm+1 is zero everywhere except at the component
(n+ 1, n+ 1) on where is equal to 1. Then, the dual problem can be cast as a SDP:

d∗ = max
ν

g(ν) = max
ν

ν>q : F0 �
m+1∑

i=1

νiFi

Now consider a similar problem
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inf
a∼(â,Γ)

Prob(a>x ≥ b)

where Γ ∈ Sn is the covariance of a and E[a] = â. We can re-express the objective function as

Prob(a>x ≥ b) = Eπ(1A(s))

where

1A(s) =

{
1 if s ∈ A
0 otherwise

where A = {a : a>x ≥ b}. Thus, our decision variable changes from a to s ∈ Rn. Since Γ and â
are given, the second moment C can be directly solved as

C = Γ + ââ>

Now, the original problem of finding a ∼ (â,Γ) to minimize Prob(a>x ≥ b) can now be written in
terms of s as

inf
π(s)

∫
1Aπ(s)ds

s.t.

∫
π(s)ds = 1

∫
sπ(s)dx = â

∫
ss>π(s)dx = C

The three constraints can be even more concisely written as

∫ [
s
1

] [
s
1

]>
π(s)ds =

[
C â
â> 1

]
= Q

Following the same logic in constructing the dual problem as in the first moment problem discussed,
we get

max
M∈Sn+1

Tr(MQ)

s.t. 1A(s) ≥
[
s
1

]>
M

[
s
1

]
∀s

Since 1A(s) = 1 if s>x ≥ b and 0 otherwise, the above constraint is equivalent to
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[
s
1

]>
M

[
s
1

]
≤ 1 ∀s

[
s
1

]>
M

[
s
1

]
≤ 0 ∀s, s>x < b

The first constraint can be cast as a LMI: M � J , where J = diag(0n, 1), while the second
constraint must be treated with the S-procedure (see Boyd book page 655). Using the S-procedure
we have

∀s, s>x ≤ b :

[
s
1

]>
M

[
s
1

]
≤ 0

if and only if there exists τ ≥ 0 such that

M � τ
[

0 a/2
a>/2 b

]

Then, the dual can be cast as a SDP

max
M∈Sn+1,τ≥0

Tr(MQ)

s.t. M � J, M � τ
[

0 a/2
a>/2 b

]

If the covariance matrix satisfies Γ � 0, then strong duality holds, and the SDP bound is exact.
The SDP problem can be solved analytically (see El Ghaoui & Nilim, 2005):

p∗ =
||Γ1/2x||22

(b− â>x)2
+ + ||Γ1/2x||22

9.5 Value-at-Risk (VaR) optimization

Consider x ∈ Rn a vector of returns (typically unknown), and w ∈ Rn a portfolio weight vector.
Then w>x represents the total return. To address the problem of finding an optimal portfolio w?

we have different approaches

1. Mean-Variance approach:

Assume E[x] = x̂ and E[(x− x̂)(x− x̂)>] = Σ. Our portfolio problem can be written as

max
w∈W

x̂>w − λw>Σw

where W = {w ≥ 0, 1>w = B} and λ ≥ 0 (B represents the initial budget). The term
λw>Σw control the risk of our portfolio by controlling the importance of the portfolio’s
variance in the optimization problem.

2. VaR approach:
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We are interested in controlling the probability of bad returns. This can be expressed that
we want that the probability of losing more than γ dollars to be less than a probability ε:

P{x : w>x ≤ −γ} ≤ ε

In this case ω>x is our return, for γ ≥ 0 the term −γ represents that we are losing γ dollars.
Thus, the constraint ω>x ≤ −γ represents losing more than γ dollars. The previous constraint
can equivalently be written as

P{x : γ ≤ −w>x} ≤ ε
The VaR problem is written as:

γ∗ = min
γ
γ : Probx{x : (−ω)>x ≥ γ} ≤ ε

that can be complicated to calculate even for known distributions of x. However, we consider
the distributional robustness counterpart, on which we do not known the distribution of x
and we only have information of the first two moments:

sup
x∼(x̂,Σ)

Prob{x : (−ω)>x ≥ γ} ≤ ε

⇔ inf
x∼(x̂,Σ)

Prob{x : (−ω)>x ≤ γ} ≥ 1− ε

which for Σ � 0 is equivalent as

(−ω)>x̂+

√
1− ε
ε

√
w>Σw ≤ γ

Since we are trying to minimize γ, we know it will be pushed to its lower bound. Then,
solving

min
w∈W

(−ω)>x̂+

√
1− ε
ε

√
w>Σw

= min
w∈W

−ω>x̂+

√
1− ε
ε
||Σ1/2w||2

which is a convex problem that finds optimal γ? for known x̂ and Σ.

We are interested in finding the VaR in the case where x̂ is uncertain and is between bounds of the
form x̂ ∈ [x

¯
, x̄], while Σ is not affected by the uncertainty. Then, let κ =

√
(1− ε)/ε, the robust

counterpart can be written as:

min
w∈W

max
x̂∈[x

¯
,x̄]
− w>x̂+ κ

√
w>Σw

⇔ min
w∈W

κ
√
w>Σw +

n∑

i=1

max
xi∈[x

¯i
,x̄i]
−wixi

⇔ min
w∈W

κ
√
w>Σw +

n∑

i=1

max(−wix
¯i
, − wix̄i)

that is a convex problem that can be directly implemented in cvx.

Now, we are interested in studying when there is uncertainty on Σ, and there is no uncertainty on
x̂. For example, a typical uncertainty of Σ ∈ S3 is of the form
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C =



Σ : Σ =



◦ + ?
+ ◦ −
? − ◦


 � 0





where ◦ represents that the value is known, + represents that the value is nonnegative and −
represents that the value is nonpositive. We are interested in finding the Robust Counterpart for
this uncertainty of the VaR problem. First, consider that w is known, then the maximization part
can be cast as an SDP, since:

max
Σ∈C

w>Σw

⇔ max
Σ�0

Tr(Σ(ww>)) : Σ11 = ◦,Σ22 = ◦,Σ33 = ◦,Σ12 ≥ 0,Σ13 ≤ 0

that is an SDP problem, since the objective function is linear on Σ, and we only have linear
equalities and inequality constraints, while Σ has to be in the positive semidefinite cone.

Now, consider the robust counterpart:

min
w∈W

max
Σ∈C

− w>x̂+ κ
√
w>Σw

To solve this problem, recall the following Theorem

Theorem 9.5.1. Sion Minimax Theorem. Let f(x, y) be a function f : Rn × Rm → R
(on which x ∈ Rn and y ∈ Rm), that fulfills the following properties

• f(·, y) is convex on its first argument for fixed y.

• f(x, ·) is concave on its second argument for fixed x.

• X is a convex compact set.

• Y is a convex set.

Then:

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

Proof: See https://projecteuclid.org/euclid.kmj/1138038812

Now, let f(w,Σ) = −w>x̂ + κ
√
w>Σw = −w>x̂ + κ||Σ1/2w||2. For fixed w, we have that the

function is concave since its hypograph is a convex set. Indeed

||Σ1/2w||2 ≥ t, Σ � 0

⇔ w>Σw ≥ t2, Σ � 0, t ≥ 0

⇔ t2 − w>Σw ≤ 0, Σ � 0, t ≥ 0

that is an intersection of convex constraints, and hence a convex set.

For fixed Σ, we have that the function is convex since its epigraph is a convex set. Indeed
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−w>x̂+ ||Σ1/2w||2 ≤ t
is an SOCP constraint, that is convex. Then the problem is equivalent by flipping min and max

max
Σ∈C

min
w∈W

− w>x̂+ κ
√
w>Σw

that can be cast as an SDP. For more details see “Worst-Case Value-At-Risk and Robust Port-
folio Optimization: A Conic Programming Approach”, by L. El-Ghaoui, M. Oks and F. Oustry,
Operations Research, vol. 51, no. 4, pp. 543-556.

9.6 Applications

9.6.1 Stability on Discrete Time Systems

Consider the autonomous discrete time-invariant system x(t + 1) = Ax(t). It is well know that
stability can be ensured if all eigenvalues of A are inside the unit circle.

Consider a possible Lyapunov matrix P ∈ Sn++ and α ∈ (0, 1). If any trajectory satisfies

x(t+ 1)>Px(t+ 1) ≤ α2x(t)>Px(t)

then the system is stable. The previous condition can be cast as:

(Ax)>P (Ax) ≤ α2x>Px ⇔ A>PA � αP 2

with P � 0. This defines two LMIs that can be cast as a SDP:

max
P∈Sn,t∈R

t

s.t. tI � P
α2P � A>PA
Tr(P ) = 1

If t > 0, then P � 0, and so the system is stable. If t < 0 the system is not stable.

• Now, as an extension, consider a feedback discrete-time system:

x(t+ 1) = Ax(t) +Bu(t), u(t) = Kx(t) ⇒ x(t+ 1) = (A+BK)x(t)

From the same argument as before if a matrix P � 0 exists such that:

α2P � (A+BK)>P (A+BK)

Define the following change of variables X = P−1 and U = KX. Then, multiplying from the left
by X and from the right by X, the system can be cast as:
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α2XX−1X � X(A+BK)>X−1(A+BK)X

⇔ α2X � (AX +BU)>X−1(AX +BU)

⇔ α2X − (AX +BU)X−1(AX +BU) � 0

⇔
(

α2X (AX +BU)>

AX +BU X

)
� 0

from Schur complements. This is a LMI on X and U , that is convex and can be cast as a SDP as

max
X∈Sn,t∈R

t

s.t. tI � X
(

α2X (AX +BKX)>

AX +BKX X

)
� 0

Tr(X) = 1

• Now, consider a Robust extension of the form:

x(t+ 1) = A(t)x(t) +B(t)u(t)

on which A(t) and B(t) are obtained from a possible set of L different modes:

[A(t), B(t)] ∈
[
A(1), B(1);A(2), B(2); . . . ;A(L), B(L)

]

The system is robust stable if the same Lyapunov matrix P is stable for every mode in the closed
loop:

(
α2X (A(i)X +B(i)U)>

A(i)X +B(i)U X

)
� 0, ∀i = 1, . . . , L

• Consider the system x(t+ 1) = ϕ(Ax(t)), where ϕ(v) = max(0, v) is the ReLU function. Observe
that if y = ϕ(u), then it clearly satisfies that yi ≤ yiui, since for ui ≤ 0, we have 0 ≤ 0, and for
ui ≥ 0, we have u2

i ≤ u2
i . Thus, the condition of stability can be cast as:

x(t+ 1)>Px(t+ 1) ≤ α2x(t)>Px(t) whenever xi(t+ 1)2 ≤ xi(t+ 1)[Ax(t)]i

The constraint can be dualized to obtain a sufficient condition that yields a LMI:

x(t+ 1)>Px(t+ 1) ≤ α2x(t)>Px(t) +
n∑

i=1

λi
[
x2
i (t+ 1)− xi(t+ 1)[Ax(t)]i

]

• A similar scheme than the previous one are the so called Lure Systems. Assume a SISO system
of the form x(t + 1) = Ax(t) + bϕ(c>x(t)), where y(t) = c>x(t). For example, the function ϕ(w)
can be the ReLU function or the saturation function. The particularity of these functions are that
their slope is always less than 1. Define the system as the following:
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x(t+ 1) = Ax(t) + bu(t), y(t) = c>x(t), u(t) = ϕ(y(t))

We are interested in the stability of this system, that is, finding a matrix P � 0 such that:

x(t+ 1)>Px(t+ 1) ≤ α2x(t)>Px(t)

Since the slope of ϕ(y) is always less than 1, we have:

slope ≤ 1→ u

y
≤ 1⇒ u2 ≤ uy, u ≥ 0

that is, we are interested in the problem:

q1(x, u) , (Ax+ bu)>P (Ax+ bu)− α2x>Px ≤ 0

s.t. q2(x, u) , u2 − u(c>x) ≤ 0

Dualizing −q2(x, u) ≥ 0 we can write the system as a LMI of the form:

(
x
u

)>{[
A>

b>

]
P [A b]−

[
α2P 0

0 0

]
+ λ

[
0 c/2

c>/2 −1

]}(
x
u

)
≤ 0

or equivalently:

[
A>

b>

]
P [A b]−

[
α2P 0

0 0

]
+ λ

[
0 c/2

c>/2 −1

]
� 0

that, in addition of P � 0 and λ ≥ 0, defines a SDP. This is actually a sufficient condition for
Lyapunov stability, due to the S-procedure lemma, that will be explored in the next sections.

• In the same approach of the previous problem, consider the problem of computing the maximum
eigenvalue of C, that is:

p∗ = max
x>x≤1

x>Cx

Then using the previous approach, define q0(x) , x>Cx and q1(x) , x>x−1 ≤ 0. The Lagrangian
of this maximization problem can be cast as:

L(x, λ) = x>C + λ(1− x>x)

From strong duality (due to Slater condition since x = 0 is a feasible interior point), we have:

p∗ = d∗ = min
λ≥0

max
x

x>Cx+ λ(1− x>x)

that yields: λmax(C) = d∗ = minλ≥0 λ : C � λI.
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9.6.2 Robust Stability on Discrete Time Systems

Consider the following system xt+1 = (A + ∆t)xt, where ||∆t|| ≤ 1. We want to know if ∆t can
destabilize the system.

Consider the Lyapunov function V (x) = x>Px = ||P 1/2x||22 with P � 0. Lyapunov stability is
ensured if for α ∈ (0, 1):

V (xt+1) ≤ α2V (xt)

As we know, without ∆t, the condition reduces to the LMI: A>PA � α2P , P � 0.

Now, considering ∆t we require:

∀∆
||∆||≤1

: (A+ ∆)>P (A+ ∆)− α2P � 0

⇒ ∀x,∆
||∆||≤1

: x>(A+ ∆)>P (A+ ∆)x− α2x>Px ≤ 0

Add y = ∆x for some ||∆|| ≤ 1 as a new variable. Now recall that ||∆|| = ||σ||∞, the maximum
singular value of ∆. This implies that:

||∆|| = max
y=∆x

||y||2
||x||2

≤ 1 ⇒ ||y||22 ≤ ||x||22

Actually, for fixed y and x that satisfies ||y||22 ≤ ||x||22, the matrix ∆ can be computed as ∆ =
yx>/(x>x). Indeed, ∆x = yx>x/(x>x) = y. With this, our problem rewrites as:

∀x, y : q0(x, y) , (Ax+ y)>P (Ax+ y)− α2x>Px

s.t. q1(x, y) , y>y − x>x ≤ 0

Theorem 9.6.1. S-procedure. Let q0(z), q1(z) quadratic forms:

qi(z) =

[
z
1

]>
Qi

[
z
1

]

Assume ∃z0 such that q1(z0) < 0. Then q0(z) ≤ 0 whenever q1(z) ≤ 0 if and only if:

∃τ ≥ 0 : q0(z) ≤ τq1(z), ∀z (?)

or equivalently

max
z

min
τ≥0

q0(z)− τq1(z) ≤ 0

on which flipping min and max implies (?).

Proof: See Appendix B.1 and B.2 of Boyd’s Convex Optimization book (page 653).

In our problem z = (x, y). Thus, from the S-procedure the problem can be equivalently written as:
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(Ax+ y)>P (Ax+ y)− α2x>Px ≤ τ(y>y − x>x)

or equivalently, ∃τ ≥ 0 such that:

[
A>PA− α2P + τI A>P

PA −τI

]
� 0

that is a SDP problem. If this is true, our perturbed system will always be stable.

Now we study a more general problem, on which we have multiple quadratic constraints of the
form:

max
x,y

q0(x, y) , (Ax+ y)>P (Ax+ y)− α2x>Px ≤ 0

s.t. x2
i ≤ y2

i , i = 1, . . . ,m

Observe that since we have multiple quadratic constraints, the S-procedure cannot be used. How-
ever, we can use weak duality to obtain a sufficient condition. Since weak duality will give us an
upper bound of q0(x, y). If this upper bound is still less than zero, then our original system is
indeed stable using that Lyapunov matrix. However, if the upper bound is greater than zero, we
cannot conclude anything.

Let τi the dual variables associated to the constraints, then from weak duality we have:

min
τ≥0

max
x,y

q0(x, y) +

m∑

i=1

τi(y
2
i − x2

i )

Using an epigraphic reformulation we have:

min
τ≥0,t

t

s.t. t ≥ max
x,y

q0(x, y) +
m∑

i=1

τi(y
2
i − x2

i )

that is equivalent:

min
τ≥0,t

t

s.t. t ≥ (Ax+ y)>P (Ax+ y)− α2x>Px+ y>Sy − x>Sx, ∀x, y

where S = diag(τ). With this the problem can be cast as a SDP:

min
τ≥0,t

t

s.t. tI ≥
[
A>PA− α2P − S A>P

PA S

]
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9.6.3 Robust Least-Squares

In this problem we are interested in solving the following version of the least squares problem:

min
x

max
||∆||≤1

||(A+ L∆R)x− y||22 ≤ t

where t is a predefined threshold to have a good performance. The matrices L and R are chosen
such that ∆ only affect some blocks, i.e. we have uncertainty of the matrix A only in certain parts.

Define p = ∆q and q = Rx, then the problem is equivalent to:

min
x,p
||Ax+ Lp− y||22 ≤ t whenever p>p ≤ q>q = x>R>Rx

We can use the S-procedure to obtain the following problem:

∃τ ≥ 0, ∀x, p : ||Ax+ Lp− y||22 − t ≤ τ(p>p− x>R>Rx)

following the same algebraic manipulation than the previous sections this problem can be cast as
an SDP.

9.6.4 Robust SDP

Consider the nominal SDP:

min
x

c>x

s.t. F (x) , F0 +
m∑

i=1

xiFi � 0

where each Fi ∈ Sn. We want to focus on uncertainty on F (x).

a) Assume first that uncertain parameters δ ∈ RL affect the F data in a linear fashion:

F (x, δ) = G(x) + L(x)∆R+R>∆L(x)

where G(x) = F (x) (i.e. the nominal LMI), and ∆ is of the form:

∆ = diag(δ1Ir1 , . . . , δLIrL)

where ri is the dimension associated with the uncertain parameter δi.

b) We now want:

G+ L∆R> +R∆L> � 0, ∀∆ = diag(δ1I1, . . . , δLIL) with ||δ||∞ ≤ 1

that is equivalent:
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∀z : z>(G+ L∆R> +R∆L>)z ≥ 0

Define p = ∆q and q = R>z. Then the problem can be cast as:

q0(z, p) , z>(Gz + 2Lp) ≥ 0, ∀z, p whenever p2
i ≤ q2

i = (R>z)2
i , i = 1, . . . , L

That can be written as

min
z,p

q0(z, p) ≥ 0

s.t. p2
i ≤ (R>z)2

i , i = 1, . . . , L

A sufficient condition to satisfy this condition is using weak duality:

max
λ≥0

min
z,p

q0(z, p) +
m∑

i=1

λi

(
p2
i − (R>z)2

i

)

Defining S = diag(λ) the condition can be cast as a SDP using an epigraphic reformulation.

Example 1:

Consider the following problem:

||A+B∆C|| ≤ 1, ∀∆ such that ||∆|| ≤ 1

where ||A|| is the induced two-norm. Recall that:

||A|| ≤ 1 ⇔ A>A ≤ I ⇔
[
I A
A> I

]
� 0

Now, defining F (∆) = A+B∆C we have:

||F (∆)|| ≤ 1⇒
[

I A+B∆C
(A+B∆C)> I

]
� 0

⇒
[
I A
A> I

]

︸ ︷︷ ︸
G

+

[
B
0

]

︸︷︷︸
L

∆
[
0 C

]
︸ ︷︷ ︸
R>

+

[
0
C>

]
∆
[
B> 0

]
� 0

Then, using the aforementioned approach:

∀z : z>Gz + 2z>Lp ≥ 0 whenever p>p ≤ q>q = z>RR>z

for p = ∆q and q = R>z. Using the S-procedure we got:

∃λ ≥ 0 : z>Gz + 2z>Lp ≥ λ(z>RR>z − p>p)

that is equivalent to:
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∃λ ≥ 0 :

[
G− λRR> L

L> λI

]
� 0

Example 2: Stability on continuous time linear systems

Consider the system ẋ = Ax. It is well known that if exists a Lyapunov function of the form
V (x) = x>Px, with P � 0, that satisfies that its Lie derivative V̇ (x(t)) < 0, then the system is
asymptotically stable on the origin. This condition yields to the following conditions:

0 > V̇ (x(t)) = x(t)>(A>P + PA)x(t) ⇒ A>P + PA ≺ 0, P � 0

Now consider the dynamic robust style system ẋ(t) = (A+B∆(t)C)x(t) with ||∆(t)|| ≤ 1, ∀t. This
defines a time-varying system ẋ = A(t)x with A(t) = A+B∆(t)C. A possibility to ensure stability
of this system is finding a unique P such that:

∀∆, ||∆|| ≤ 1 : (A+B∆C)>P + P (A+B∆C) ≺ 0, P � 0

Repeating the process we have the following conditions:

[
A>P + PA+ λCC> BP

B>P −λI

]
≺ 0, P � 0

Applying Schur complements to the first LMI yields the Riccati equation.
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